Several proposed schemes for the physical realization of a quantum computer
consist of qubits arranged in a cellular array. In the quantum circuit model of
quantum computation, an often complex series of two-qubit gate operations is
required between arbitrarily distant pairs of lattice qubits. An alternative
model of quantum computation based on quantum cellular automata (QCA) requires
only homogeneous local interactions that can be implemented in parallel. This
would be a huge simplification in an actual experiment. We find some minimal
physical requirements for the construction of unitary QCA in a 1 dimensional
Ising spin chain and demonstrate optimal pulse sequences for information
transport and entanglement distribution. We also introduce the theory of
non-unitary QCA and show by example that non-unitary rules can generate
environment assisted entanglement.Comment: 12 pages, 8 figures, submitted to Physical Review