678 research outputs found

    Entanglement of photons

    Full text link
    It is argued that the title of this paper represents a misconception. Contrary to widespread beliefs it is electromagnetic field modes that are ``systems'' and can be entangled, not photons. The amount of entanglement in a given state is shown to depend on redefinitions of the modes; we calculate the minimum and maximum over all such redefinitions for several examples.Comment: 5 pages ReVTe

    'Parasitic invasions' or sources of good governance: constraining foreign competition in Hong Kong banking, 1956-81

    Get PDF
    This paper investigates the operation and impact of the moratorium on new banking licences imposed in Hong Kong in 1965 and the claims that foreign banks destabilised the banking system and drained resources from the colony. First it examines foreign banks' attempts to circumvent the moratorium through claims of special circumstances and buying interests in local banks, and secondly it examines the efforts of incumbents to extend barriers to non-bank financial institutions and to branches of foreign banks. The general conclusions are that while the moratorium was aimed at increasing the stability of the banking system, it had the effect of decreasing the regulatory breadth of the government, and reducing incentives for mergers and acquisitions that might have improved governance

    Sintering Kinetics of Plasma-Sprayed Zirconia TBCs

    No full text
    A model of the sintering exhibited by EB-PVD TBCs, based on principles of free energy minimization, was recently published by Hutchinson et al. In the current paper, this approach is applied to sintering of plasma-sprayed TBCs and comparisons are made with experimental results. Predictions of through-thickness shrinkage and changing pore surface area are compared with experimental data obtained by dilatometry and BET analysis respectively. The sensitivity of the predictions to initial pore architecture and material properties are assessed. The model can be used to predict the evolution of contact area between overlying splats. This is in turn related to the through-thickness thermal conductivity, using a previously-developed analytical model

    Electronic structure investigation of CeB6 by means of soft X-ray scattering

    Full text link
    The electronic structure of the heavy fermion compound CeB6 is probed by resonant inelastic soft X-ray scattering using photon energies across the Ce 3d and 4d absorption edges. The hybridization between the localized 4f orbitals and the delocalized valence-band states is studied by identifying the different spectral contributions from inelastic Raman scattering and normal fluorescence. Pronounced energy-loss structures are observed below the elastic peak at both the 3d and 4d thresholds. The origin and character of the inelastic scattering structures are discussed in terms of charge-transfer excitations in connection to the dipole allowed transitions with 4f character. Calculations within the single impurity Anderson model with full multiplet effects are found to yield consistent spectral functions to the experimental data.Comment: 9 pages, 4 figures, 1 table, http://link.aps.org/doi/10.1103/PhysRevB.63.07510

    Quasiparticle vanishing driven by geometrical frustration

    Full text link
    We investigate the single hole dynamics in the triangular t-J model. We study the structure of the hole spectral function, assuming the existence of a 120 magnetic Neel order. Within the self-consistent Born approximation (SCBA) there is a strong momentum and t sign dependence of the spectra, related to the underlying magnetic structure and the particle-hole asymmetry of the model. For positive t, and in the strong coupling regime, we find that the low energy quasiparticle excitations vanish outside the neighbourhood of the magnetic Goldstone modes; while for negative t the quasiparticle excitations are always well defined. In the latter, we also find resonances of magnetic origin whose energies scale as (J/t)^2/3 and can be identified with string excitations. We argue that this complex structure of the spectra is due to the subtle interplay between magnon-assisted and free hopping mechanisms. Our predictions are supported by an excellent agreement between the SCBA and the exact results on finite size clusters. We conclude that the conventional quasiparticle picture can be broken by the effect of geometrical magnetic frustration.Comment: 6 pages, 7 figures. Published versio

    Phase transitions in BaTiO3_3 from first principles

    Full text link
    We develop a first-principles scheme to study ferroelectric phase transitions for perovskite compounds. We obtain an effective Hamiltonian which is fully specified by first-principles ultra-soft pseudopotential calculations. This approach is applied to BaTiO3_3, and the resulting Hamiltonian is studied using Monte Carlo simulations. The calculated phase sequence, transition temperatures, latent heats, and spontaneous polarizations are all in good agreement with experiment. The order-disorder vs.\ displacive character of the transitions and the roles played by different interactions are discussed.Comment: 13 page

    A theoretical framework and research agenda for studying team attributions in sport

    Get PDF
    The attributions made for group outcomes have attracted a great deal of interest in recent years. In this article we bring together much of the current research on attribution theory in sport and outline a new conceptual framework and research agenda for investigating the attributions of team members. The proposed framework draws on multiple conceptual approaches including models of attribution, group dynamics and stress responses to provide a detailed hypothetical description of athletes' physiological, cognitive and affective responses to group competition. In describing this model we outline important antecedents of team attributions before hypothesising how attributions can impact hormonal and cardiovascular responses of athletes, together with cognitive (goals, choices, expectations), affective (self-esteem, emotions), and behavioural (approach-avoidance actions) responses of groups and group members. We conclude by outlining important methodological considerations and implications for structured context specific attribution-based interventions

    Quantitative comparison of single- and two-particle properties in the cuprates

    Get PDF
    We explore the strong variations of the electronic properties of copper-oxygen compounds across the doping phase diagram in a quantitative way. To this end we calculate the electronic Raman response on the basis of results from angle-resolved photoemission spectroscopy (ARPES). In the limits of our approximations we find agreement on the overdoped side and pronounced discrepancies at lower doping. In contrast to the successful approach for the transport properties at low energies, the Raman and the ARPES data cannot be reconciled by adding angle-dependent momentum scattering. We discuss possible routes towards an explanation of the suppression of spectral weight close to the (π,0)(\pi,0) points which sets in abruptly close to 21% doping.Comment: 7 pages, 4 figure

    Effective interaction between helical bio-molecules

    Get PDF
    The effective interaction between two parallel strands of helical bio-molecules, such as deoxyribose nucleic acids (DNA), is calculated using computer simulations of the "primitive" model of electrolytes. In particular we study a simple model for B-DNA incorporating explicitly its charge pattern as a double-helix structure. The effective force and the effective torque exerted onto the molecules depend on the central distance and on the relative orientation. The contributions of nonlinear screening by monovalent counterions to these forces and torques are analyzed and calculated for different salt concentrations. As a result, we find that the sign of the force depends sensitively on the relative orientation. For intermolecular distances smaller than 6A˚6\AA it can be both attractive and repulsive. Furthermore we report a nonmonotonic behaviour of the effective force for increasing salt concentration. Both features cannot be described within linear screening theories. For large distances, on the other hand, the results agree with linear screening theories provided the charge of the bio-molecules is suitably renormalized.Comment: 18 pages, 18 figures included in text, 100 bibliog

    Low Complexity Regularization of Linear Inverse Problems

    Full text link
    Inverse problems and regularization theory is a central theme in contemporary signal processing, where the goal is to reconstruct an unknown signal from partial indirect, and possibly noisy, measurements of it. A now standard method for recovering the unknown signal is to solve a convex optimization problem that enforces some prior knowledge about its structure. This has proved efficient in many problems routinely encountered in imaging sciences, statistics and machine learning. This chapter delivers a review of recent advances in the field where the regularization prior promotes solutions conforming to some notion of simplicity/low-complexity. These priors encompass as popular examples sparsity and group sparsity (to capture the compressibility of natural signals and images), total variation and analysis sparsity (to promote piecewise regularity), and low-rank (as natural extension of sparsity to matrix-valued data). Our aim is to provide a unified treatment of all these regularizations under a single umbrella, namely the theory of partial smoothness. This framework is very general and accommodates all low-complexity regularizers just mentioned, as well as many others. Partial smoothness turns out to be the canonical way to encode low-dimensional models that can be linear spaces or more general smooth manifolds. This review is intended to serve as a one stop shop toward the understanding of the theoretical properties of the so-regularized solutions. It covers a large spectrum including: (i) recovery guarantees and stability to noise, both in terms of 2\ell^2-stability and model (manifold) identification; (ii) sensitivity analysis to perturbations of the parameters involved (in particular the observations), with applications to unbiased risk estimation ; (iii) convergence properties of the forward-backward proximal splitting scheme, that is particularly well suited to solve the corresponding large-scale regularized optimization problem
    corecore