12 research outputs found

    Contourite depositional system after the exit of a strait: Case study from the late Miocene South Rifian Corridor, Morocco

    Get PDF
    Idealized facies of bottom current deposits (contourites) have been established for fine-grained contourite drifts in modern deep-marine sedimentary environments. Their equivalent facies in the ancient record however are only scarcely recognized due to the weathered nature of most fine-grained deposits in outcrop. Facies related to the erosional elements (i.e. contourite channels) of contourite depositional systems have not yet been properly established and related deposits in outcrop appear non-existent. To better understand the sedimentary facies and facies sequences of contourites, the upper Miocene contourite depositional systems of the South Rifian Corridor (Morocco) is investigated. This contourite depositional system formed by the dense palaeo-Mediterranean Outflow Water. Foraminifera assemblages were used for age-constraints (7.51 to 7.35 Ma) and to determine the continental slope depositional domains. Nine sedimentary facies have been recognized based on lithology, grain-size, sedimentary structures and biogenic structures. These facies were subsequently grouped into five facies associations related to the main interpreted depositional processes (hemipelagic settling, contour currents and gravity flows). The vertical sedimentary facies succession records the tectonically induced, southward migration of the contourite depositional systems and the intermittent behaviour of the palaeo-Mediterranean Outflow Water, which is mainly driven by precession and millennial-scale climate variations. Tides substantially modulated the palaeo-Mediterranean Outflow Water on a sub-annual scale. This work shows exceptional examples of muddy and sandy contourite deposits in outcrop by which a facies distribution model from the proximal continental slope, the contourite channel to its adjacent contourite drift, is proposed. This model serves as a reference for contourite recognition both in modern environments and the ancient record. Furthermore, by establishing the hydrodynamics of overflow behaviour a framework is provided that improves process-based interpretation of deep-water bottom current deposits

    On the practical solution of the Thue-Mahler equation

    No full text

    Regulação da absorção e assimilação do nitrogĂȘnio nas plantas Regulation of nitrogen absortion and assimilation in plants

    No full text
    A presente revisĂŁo tem por objetivo discutir os mecanismos de regulação da absorção e assimilação do nitrogĂȘnio nas plantas, de modo que a eficiĂȘncia de uso desse nutriente seja aumentada. O nitrogĂȘnio Ă© absorvido nas raĂ­zes sob a forma de NO3- ou NH4+, sendo entĂŁo incorporado em aminoĂĄcidos na prĂłpria raiz ou na parte aĂ©rea. A taxa e a quantidade de nitrogĂȘnio absorvido e assimilado durante o ciclo da planta dependem da presença de carregadores especĂ­ficos na membrana plasmĂĄtica, da atividade das enzimas envolvidas no seu ciclo, da disponibilidade de energia necessĂĄria para os processos de absorção e assimilação e do estĂĄdio de desenvolvimento da planta. InĂșmeros grupos de pesquisa tĂȘm centrado esforços na identificação dos pontos mais limitantes do metabolismo do nitrogĂȘnio nas plantas. Os limitadores tĂȘm sido relacionados com: a) a afinidade dos carregadores pelo nitrato e amĂŽnio; b) o suprimento de carboidratos Ă s raĂ­zes; c) o nĂ­vel de aminoĂĄcidos no floema radicular; d) a atividade das enzimas redutase do nitrato (RN), sintetase da glutamina (GS) e sintase do glutamato (GOGAT); e) a fonte de N suprida Ă s plantas (NO3- ou NH4+); f) o local de assimilação do N (raiz ou parte aĂ©rea). Esses estudos tĂȘm mostrado que o metabolismo do N Ă© multiregulado e integrado ao metabolismo geral da planta. A identificação de pontos metabĂłlicos especĂ­ficos que sĂŁo mais limitantes para o incremento da produtividade Ă© complexa. A perspectiva Ă© que a clonagem dos transportadores de N poderĂĄ auxiliar os programas de melhoramento genĂ©tico na obtenção de plantas mais eficientes na absorção do nitrogĂȘnio.<br>Nitrogen is absorbed as NO3- ou NH4+ and assimilated into aminoacids both in roots and shoots. Root absortion (rate and total amount) at each plant developmental stage depends on specific plasma membrane carriers, enzyme activity for reduction and assimilation and energy availability for both processes. Several research groups are trying to identify bottlenecks on nitrogen metabolism processes. The main limitations referred are: a) Carriers affinity for nitrate and amonium, b) Carbohydrate supply to roots, c) Phloem aminoacids level concentration, d) Nitrate reductase (NR), glutamine synthetase (GS) and glutamate synthase (GOGAT) enzyme activity, e) N source (NO3- ou NH4+) supplied, and f) Site of assimilation (root or shoot). These studies are showing that N metabolism is multi-regulated and integrated to plant general metabolism. The identification of specific metabolic steps that limit plant productivity is very complex. Cloning specific N carriers may help breeding programs in order to get more nitrogen efficient plants

    Introduction to Chlamydomonas

    No full text
    corecore