516 research outputs found
Interacting Electrons on a Fluctuating String
We consider the problem of interacting electrons constrained to move on a
fluctuating one-dimensional string. An effective low-energy theory for the
electrons is derived by integrating out the string degrees of freedom to lowest
order in the inverse of the string tension and mass density, which are assumed
to be large. We obtain expressions for the tunneling density of states, the
spectral function and the optical conductivity of the system. Possible
connections with the phenomenology of the cuprate high temperature
superconductors are discussed.Comment: 14 pages, 1 figur
Distribution of spectral weight in a system with disordered stripes
The ``band-structure'' of a disordered stripe array is computed and compared,
at a qualitative level, to angle resolved photoemission experiments on the
cuprate high temperature superconductors. The low-energy states are found to be
strongly localized transverse to the stripe direction, so the electron dynamics
is strictly one-dimensional (along the stripe). Despite this, aspects of the
two dimensional band-structure Fermi surface are still vividly apparent.Comment: 10 pages, 11 figure
Mechanical mode dependence of bolometric back-action in an AFM microlever
Two back action (BA) processes generated by an optical cavity based detection
device can deeply transform the dynamical behavior of an AFM microlever: the
photothermal force or the radiation pressure. Whereas noise damping or
amplifying depends on optical cavity response for radiation pressure BA, we
present experimental results carried out under vacuum and at room temperature
on the photothermal BA process which appears to be more complex. We show for
the first time that it can simultaneously act on two vibration modes in
opposite direction: noise on one mode is amplified whereas it is damped on
another mode. Basic modeling of photothermal BA shows that dynamical effect on
mechanical mode is laser spot position dependent with respect to mode shape.
This analysis accounts for opposite behaviors of different modes as observed
Weak capture of protons by protons
The cross section for the proton weak capture reaction
is calculated with wave functions obtained from a number of modern, realistic
high-precision interactions. To minimize the uncertainty in the axial two-body
current operator, its matrix element has been adjusted to reproduce the
measured Gamow-Teller matrix element of tritium decay in model
calculations using trinucleon wave functions from these interactions. A
thorough analysis of the ambiguities that this procedure introduces in
evaluating the two-body current contribution to the pp capture is given. Its
inherent model dependence is in fact found to be very weak. The overlap
integral for the pp capture is predicted to be in the range
7.05--7.06, including the axial two-body current contribution, for all
interactions considered.Comment: 17 pages RevTeX (twocolumn), 5 postscript figure
Effective Actions and Phase Fluctuations in d-wave Superconductors
We study effective actions for order parameter fluctuations at low
temperature in layered d-wave superconductors such as the cuprates. The order
parameter lives on the bonds of a square lattice and has two amplitude and two
phase modes associated with it. The low frequency spectral weights for
amplitude and relative phase fluctuations is determined and found to be
subdominant to quasiparticle contributions. The Goldstone phase mode and its
coupling to density fluctuations in charged systems is treated in a
gauge-invariant manner. The Gaussian phase action is used to study both the
-axis Josephson plasmon and the more conventional in-plane plasmon in the
cuprates. We go beyond the Gaussian theory by deriving a coarse-grained quantum
XY model, which incorporates important cutoff effects overlooked in previous
studies. A variational analysis of this effective model shows that in the
cuprates, quantum effects of phase fluctuations are important in reducing the
zero temperature superfluid stiffness, but thermal effects are small for .Comment: Some numerical estimates corrected and figures changed. to appear in
PRB, Sept.1 (2000
Liver fat content and lipid metabolism in dairy cows during early lactation and during a mid-lactation feed restriction
During the transition period, the lipid metabolism of dairy cows is markedly affected by energy status. Fatty liver is one of the main health disorders after parturition. The aim of this study was to evaluate the effects of a negative energy balance (NEB) at 2 stages in lactation [NEB at the onset of lactation postpartum (p.p.) and a deliberately induced NEB by feed restriction near 100 d in milk] on liver triglyceride content and parameters of lipid metabolism in plasma and liver based on mRNA abundance of associated genes. Fifty multiparous dairy cows were studied from wk 3 antepartum to approximately wk 17 p.p. in 2 periods. According to their energy balance in period 1 (parturition to wk 12 p.p.), cows were allocated to a control (CON; n=25) or a restriction group (RES; 70% of energy requirements; n=25) for 3 wk in mid lactation starting at around 100 d in milk (period 2). Liver triglyceride (TG) content, plasma nonesterified fatty acids (NEFA), and β-hydroxybutyrate were highest in wk 1 p.p. and decreased thereafter. During period 2, feed restriction did not affect liver TG and β-hydroxybutyrate concentration, whereas NEFA concentration was increased in RES cows as compared with CON cows. Hepatic mRNA abundances of tumor necrosis factor α, ATP citrate lyase, mitochondrial glycerol-3-phosphate acyltransferase, and glycerol-3-phosphate dehydrogenase 2 were not altered by lactational and energy status during both experimental periods. The expression of fatty acid synthase was higher in period 2 compared with period 1, but did not differ between RES and CON groups. The mRNA abundance of acetyl-coenzyme A-carboxylase showed a tendency toward higher expression during period 2 compared with period 1. The solute carrier family 27 (fatty acid transporter), member 1 (SLC27A1) was upregulated in wk 1 p.p. and also during feed restriction in RES cows. In conclusion, the present study shows that a NEB has different effects on hepatic lipid metabolism and TG concentration in the liver of dairy cows at early and later lactation. Therefore, the homeorhetic adaptations during the periparturient period trigger excessive responses in metabolism, whereas during the homeostatic control of endocrine and metabolic systems after established lactation, as during the period of feed restriction in the present study, organs are well adapted to metabolic and environmental changes
Novel Druggable Hot Spots in Avian Influenza Neuraminidase H5N1 Revealed by Computational Solvent Mapping of a Reduced and Representative Receptor Ensemble
The influenza virus subtype H5N1 has raised concerns of a possible human pandemic threat because of its high virulence and mutation rate. Although several approved anti-influenza drugs effectively target the neuraminidase, some strains have already acquired resistance to the currently available anti-influenza drugs. In this study, we present the synergistic application of extended explicit solvent molecular dynamics (MD) and computational solvent mapping (CS-Map) to identify putative ‘hot spots’ within flexible binding regions of N1 neuraminidase. Using representative conformations of the N1 binding region extracted from a clustering analysis of four concatenated 40-ns MD simulations, CS-Map was utilized to assess the ability of small, solvent-sized molecules to bind within close proximity to the sialic acid binding region. Mapping analyses of the dominant MD conformations reveal the presence of additional hot spot regions in the 150- and 430-loop regions. Our hot spot analysis provides further support for the feasibility of developing high-affinity inhibitors capable of binding these regions, which appear to be unique to the N1 strain
Pairing and Density Correlations of Stripe Electrons in a Two-Dimensional Antiferromagnet
We study a one-dimensional electron liquid embedded in a 2D antiferromagnetic
insulator, and coupled to it via a weak antiferromagnetic spin exchange
interaction. We argue that this model may qualitatively capture the physics of
a single charge stripe in the cuprates on length- and time scales shorter than
those set by its fluctuation dynamics. Using a local mean-field approach we
identify the low-energy effective theory that describes the electronic spin
sector of the stripe as that of a sine-Gordon model. We determine its phases
via a perturbative renormalization group analysis. For realistic values of the
model parameters we obtain a phase characterized by enhanced spin density and
composite charge density wave correlations, coexisting with subleading triplet
and composite singlet pairing correlations. This result is shown to be
independent of the spatial orientation of the stripe on the square lattice.
Slow transverse fluctuations of the stripes tend to suppress the density
correlations, thus promoting the pairing instabilities. The largest amplitudes
for the composite instabilities appear when the stripe forms an antiphase
domain wall in the antiferromagnet. For twisted spin alignments the amplitudes
decrease and leave room for a new type of composite pairing correlation,
breaking parity but preserving time reversal symmetry.Comment: Revtex, 28 pages incl. 5 figure
Search for single top quarks in the tau+jets channel using 4.8 fb of collision data
We present the first direct search for single top quark production using tau
leptons. The search is based on 4.8 fb of integrated luminosity
collected in collisions at =1.96 TeV with the D0 detector
at the Fermilab Tevatron Collider. We select events with a final state
including an isolated tau lepton, missing transverse energy, two or three jets,
one or two of them tagged. We use a multivariate technique to discriminate
signal from background. The number of events observed in data in this final
state is consistent with the signal plus background expectation. We set in the
tau+jets channel an upper limit on the single top quark cross section of
\TauLimObs pb at the 95% C.L. This measurement allows a gain of 4% in expected
sensitivity for the observation of single top production when combining it with
electron+jets and muon+jets channels already published by the D0 collaboration
with 2.3 fb of data. We measure a combined cross section of
\SuperCombineXSall pb, which is the most precise measurement to date.Comment: 12 pages, 5 figure
Correlation Testing in Nuclear Density Functional Theory
Correlation testing provides a quick method of discriminating amongst
potential terms to include in a nuclear mass formula or functional and is a
necessary tool for further nuclear mass models; however a firm mathematical
foundation of the method has not been previously set forth. Here, the necessary
justification for correlation testing is developed and more detail of the
motivation behind its use is give. Examples are provided to clarify the method
analytically and for computational benchmarking. We provide a quantitative
demonstration of the method's performance and short-comings, highlighting also
potential issues a user may encounter. In concluding we suggest some possible
future developments to improve the limitations of the method.Comment: Accepted to EPJ-
- …