1,925 research outputs found

    Inter- and intra-layer excitons in MoS2_2/WS2_2 and MoSe2_2/WSe2_2 heterobilayers

    Get PDF
    Accurately described excitonic properties of transition metal dichalcogenide heterobilayers (HBLs) are crucial to comprehend the optical response and the charge carrier dynamics of them. Excitons in multilayer systems posses inter or intralayer character whose spectral positions depend on their binding energy and the band alignment of the constituent single-layers. In this study, we report the electronic structure and the absorption spectra of MoS2_2/WS2_2 and MoSe2_2/WSe2_2 HBLs from first-principles calculations. We explore the spectral positions, binding energies and the origins of inter and intralayer excitons and compare our results with experimental observations. The absorption spectra of the systems are obtained by solving the Bethe-Salpeter equation on top of a G0_0W0_0 calculation which corrects the independent particle eigenvalues obtained from density functional theory calculations. Our calculations reveal that the lowest energy exciton in both HBLs possesses interlayer character which is decisive regarding their possible device applications. Due to the spatially separated nature of the charge carriers, the binding energy of inter-layer excitons might be expected to be considerably smaller than that of intra-layer ones. However, according to our calculations the binding energy of lowest energy interlayer excitons is only \sim 20\% lower due to the weaker screening of the Coulomb interaction between layers of the HBLs. Therefore, it can be deduced that the spectral positions of the interlayer excitons with respect to intralayer ones are mostly determined by the band offset of the constituent single-layers. By comparing oscillator strengths and thermal occupation factors, we show that in luminescence at low temperature, the interlayer exciton peak becomes dominant, while in absorption it is almost invisible.Comment: 17 pages, 4 figure

    3.13 Tank mixtures of insecticides and fungicides, adjuvants, additives, fertilizers and their effects on honey bees after contact exposure in a spray chamber

    Get PDF
    In agriculture honey bees may be exposed to multiple pesticides. In contrast to single applications of plant protection products (PPP), the effects of tank mixtures of two or more PPP on honey bees are not routinely assessed in the risk assessment of plant protection products. However, tank mixes are often common practice by farmers. Mixtures of practically non-toxic substances can lead to synergistic increase of toxic effects on honey bees, observed for the first time in 19921 in combinations of pyrethroids and azole fungicides. 2004 Iwasa et al. already reported that ergosterol-biosynthesis-inhibiting (EBI) fungicides strongly increase the toxicity of neonicotinoids in laboratory for the contact exposure route. Furthermore, in agricultural practice additives, adjuvants and fertilizers may be added to the spray solution. For these additives usually no informations on potential side effects on bees are available when mixed with plant protection products. Therefore, it is considered necessary to investigate possible additive or synergistic impacts and evaluate potentially critical combinations to ensure protection of bees. Here, we investigated the effects on bees of combinations of insecticides, fungicides and fertilizers under controlled laboratory conditions. A spray chamber was used to evaluate effects following contact exposure by typical field application rates. Subsequently, mortality and behaviour of bees were monitored for at least 48 h following the OECD acute contact toxicity test 2143. Dependencies of synergistic effects and the time intervals between the applications of the mixing partners were evaluated.In agriculture honey bees may be exposed to multiple pesticides. In contrast to single applications of plant protection products (PPP), the effects of tank mixtures of two or more PPP on honey bees are not routinely assessed in the risk assessment of plant protection products. However, tank mixes are often common practice by farmers. Mixtures of practically non-toxic substances can lead to synergistic increase of toxic effects on honey bees, observed for the first time in 19921 in combinations of pyrethroids and azole fungicides. 2004 Iwasa et al. already reported that ergosterol-biosynthesis-inhibiting (EBI) fungicides strongly increase the toxicity of neonicotinoids in laboratory for the contact exposure route. Furthermore, in agricultural practice additives, adjuvants and fertilizers may be added to the spray solution. For these additives usually no informations on potential side effects on bees are available when mixed with plant protection products. Therefore, it is considered necessary to investigate possible additive or synergistic impacts and evaluate potentially critical combinations to ensure protection of bees. Here, we investigated the effects on bees of combinations of insecticides, fungicides and fertilizers under controlled laboratory conditions. A spray chamber was used to evaluate effects following contact exposure by typical field application rates. Subsequently, mortality and behaviour of bees were monitored for at least 48 h following the OECD acute contact toxicity test 2143. Dependencies of synergistic effects and the time intervals between the applications of the mixing partners were evaluated

    Raman imaging and electronic properties of graphene

    Full text link
    Graphite is a well-studied material with known electronic and optical properties. Graphene, on the other hand, which is just one layer of carbon atoms arranged in a hexagonal lattice, has been studied theoretically for quite some time but has only recently become accessible for experiments. Here we demonstrate how single- and multi-layer graphene can be unambiguously identified using Raman scattering. Furthermore, we use a scanning Raman set-up to image few-layer graphene flakes of various heights. In transport experiments we measure weak localization and conductance fluctuations in a graphene flake of about 7 monolayer thickness. We obtain a phase-coherence length of about 2 μ\mum at a temperature of 2 K. Furthermore we investigate the conductivity through single-layer graphene flakes and the tuning of electron and hole densities via a back gate

    The prevalence of naturally acquired multiple infections of Wuchereria bancrofti and human malarias in anophelines

    Get PDF
    Malaria and filaria infection rates were determined for anopheline mosquitoes collected whilst biting and resting in village houses in Papua New Guinea. The number of anophelines infected with both parasites was greater than expected from the infection rates of each parasite and this difference was significant in resting collections. The excess of multiply infected mosquitoes is probably a result of a vector population composed of individuals with differing numbers of opportunities to become infected. Malaria-positive, Anopheles punctulatus from resting catches had a significantly greater number of Stage 3 Wuchereria bancroftilarvae than malaria-negative mosquitoes. However, multiply infected mosquitoes appear to suffer greater mortality than non-infected or singly infected mosquitoes when the filarial worm reaches the third stage. Any potential increase in transmission resulting from multiple infections is thereby offset by a greater mortality rate in these mosquitoe

    Conductance of Open Quantum Billiards and Classical Trajectories

    Full text link
    We analyse the transport phenomena of 2D quantum billiards with convex boundary of different shape. The quantum mechanical analysis is performed by means of the poles of the S-matrix while the classical analysis is based on the motion of a free particle inside the cavity along trajectories with a different number of bounces at the boundary. The value of the conductance depends on the manner the leads are attached to the cavity. The Fourier transform of the transmission amplitudes is compared with the length of the classical paths. There is good agreement between classical and quantum mechanical results when the conductance is achieved mainly by special short-lived states such as whispering gallery modes (WGM) and bouncing ball modes (BBM). In these cases, also the localization of the wave functions agrees with the picture of the classical paths. The S-matrix is calculated classically and compared with the transmission coefficients of the quantum mechanical calculations for five modes in each lead. The number of modes coupled to the special states is effectively reduced.Comment: 19 pages, 6 figures (jpg), 2 table

    Increased Sensitivity to Possible Muonium to Antimuonium Conversion

    Get PDF
    A new experimental search for muonium-antimuonium conversion was conducted at the Paul Scherrer Institute, Villigen, Switzerland. The preliminary analysis yielded one event fulfilling all required criteria at an expected background of 1.7(2) events due to accidental coincidences. An upper limit for the conversion probability in 0.1 T magnetic field is extracted as 810118 \cdot 10^{-11} (90% CL).Comment: 2 figure

    Negative length orbits in normal-superconductor billiard systems

    Get PDF
    The Path-Length Spectra of mesoscopic systems including diffractive scatterers and connected to superconductor is studied theoretically. We show that the spectra differs fundamentally from that of normal systems due to the presence of Andreev reflection. It is shown that negative path-lengths should arise in the spectra as opposed to normal system. To highlight this effect we carried out both quantum mechanical and semiclassical calculations for the simplest possible diffractive scatterer. The most pronounced peaks in the Path-Length Spectra of the reflection amplitude are identified by the routes that the electron and/or hole travels.Comment: 4 pages, 4 figures include

    Geometry-dependent scattering through quantum billiards: Experiment and theory

    Full text link
    We present experimental studies of the geometry-specific quantum scattering in microwave billiards of a given shape. We perform full quantum mechanical scattering calculations and find an excellent agreement with the experimental results. We also carry out the semiclassical calculations where the conductance is given as a sum of all classical trajectories between the leads, each of them carrying the quantum-mechanical phase. We unambiguously demonstrate that the characteristic frequencies of the oscillations in the transmission and reflection amplitudes are related to the length distribution of the classical trajectories between the leads, whereas the frequencies of the probabilities can be understood in terms of the length difference distribution in the pairs of classical trajectories. We also discuss the effect of non-classical "ghost" trajectories that include classically forbidden reflection off the lead mouths.Comment: 4 pages, 4 figure

    Особливості управлінння персоналом в сучасних організаціях

    Get PDF
    Головним ресурсом підприємства є люди. Саме від персоналу залежить якість продукції, рівень обслуговування, загальний ріст і розвиток компанії. Система управління персоналом підприємства представляє собою сукупність прийомів, методів, управлінських дій спрямованих на організації роботи з персоналом. При формуванні системи управління персоналом організації необхідно враховувати такі моменти: організація є відкритою системою і на її діяльність впливають фактори зовнішнього середовища, такі, як ринкова кон’юнктура, ринок праці, правові норми, потреби споживачів, конкуренти; внутрішнє середовище організації характеризується такими складовими, як: місія організації, ціль діяльності, задачі, люди, організаційна структура та корпоративна культура; результат діяльності організації залежить від кваліфікації, досвіду, компетенцій персоналу організації; конкурентоздатність організації залежить не лише від конкурентоздатності продукції чи послуг, а і від конкурентоздатності персоналу організації
    corecore