1,331 research outputs found

    Diffuse-interface model for rapid phase transformations in nonequilibrium systems

    Get PDF
    A thermodynamic approach to rapid phase transformations within a diffuse interface in a binary system is developed. Assuming an extended set of independent thermodynamic variables formed by the union of the classic set of slow variables and the space of fast variables, we introduce finiteness of the heat and solute diffusive propagation at the finite speed of the interface advancing. To describe the transformation within the diffuse interface, we use the phase-field model which allows us to follow the steep but smooth change of phases within the width of diffuse interface. The governing equations of the phase-field model are derived for the hyperbolic model, model with memory, and for a model of nonlinear evolution of transformation within the diffuse-interface. The consistency of the model is proved by the condition of positive entropy production and by the outcomes of the fluctuation-dissipation theorem. A comparison with the existing sharp-interface and diffuse-interface versions of the model is given.Comment: 15 pages, regular article submitted to Physical Review

    Attenuation and damping of electromagnetic fields: Influence of inertia and displacement current

    Full text link
    New results for attenuation and damping of electromagnetic fields in rigid conducting media are derived under the conjugate influence of inertia due to charge carriers and displacement current. Inertial effects are described by a relaxation time for the current density in the realm of an extended Ohm's law. The classical notions of poor and good conductors are rediscussed on the basis of an effective electric conductivity, depending on both wave frequency and relaxation time. It is found that the attenuation for good conductors at high frequencies depends solely on the relaxation time. This means that the penetration depth saturates to a minimum value at sufficiently high frequencies. It is also shown that the actions of inertia and displacement current on damping of magnetic fields are opposite to each other. That could explain why the classical decay time of magnetic fields scales approximately as the diffusion time. At very small length scales, the decay time could be given either by the relaxation time or by a fraction of the diffusion time, depending whether inertia or displacement current, respectively, would prevail on magnetic diffusion.Comment: 21 pages, 1 figur

    Knudsen Effect in a Nonequilibrium Gas

    Full text link
    From the molecular dynamics simulation of a system of hard-core disks in which an equilibrium cell is connected with a nonequilibrium cell, it is confirmed that the pressure difference between two cells depends on the direction of the heat flux. From the boundary layer analysis, the velocity distribution function in the boundary layer is obtained. The agreement between the theoretical result and the numerical result is fairly good.Comment: 4pages, 4figure

    Test of Information Theory on the Boltzmann Equation

    Get PDF
    We examine information theory using the steady-state Boltzmann equation. In a nonequilibrium steady-state system under steady heat conduction, the thermodynamic quantities from information theory are calculated and compared with those from the steady-state Boltzmann equation. We have found that information theory is inconsistent with the steady-state Boltzmann equation.Comment: 12 page

    Identification, cDNA cloning, and targeted deletion of p70, a novel, ubiquitously expressed SH3 domain-containing protein

    Get PDF
    In a screen for proteins that interact with Jak2, we identified a previously uncharacterized 70-kDa protein and cloned the corresponding cDNA. The predicated sequence indicates that p70 contains an SH3 domain and a C-terminal domain with similarities to the catalytic motif of phosphoglycerate mutase. p70 transcripts were found in all tissues examined. Similarly, when an antibody raised against a C-terminal peptide to analyze p70 protein expression was used, all murine tissues examined were found to express p70. To investigate the in vivo role of p70, we generated a p70-deficient mouse strain. Mice lacking p70 are viable, develop normally, and do not display any obvious abnormalities. No differences were detected in various hematological parameters, including bone marrow colony-forming ability, in response to cytokines that utilize Jak2. In addition, no impairment in B- and T-cell development and proliferative ability was detected

    Magnetic relaxation in the Bianchi-I universe

    Get PDF
    Extended Einstein-Maxwell model and its application to the problem of evolution of magnetized Bianchi-I Universe are considered. The evolution of medium magnetization is governed by a relaxation type extended constitutive equation. The series of exact solutions to the extended master equations is obtained and discussed. The anisotropic expansion of the Bianchi-I Universe is shown to become non-monotonic (accelerated/decelerated) in both principal directions (along the magnetic field and orthogonal to it). A specific type of expansion, the so-called evolution with hidden magnetic field, is shown to appear when the magnetization effectively screens the magnetic field and the latter disappears from the equations for gravitational field.Comment: 32 page

    Stability of inflationary solutions driven by a changing dissipative fluid

    Get PDF
    In this paper the second Lyapunov method is used to study the stability of the de Sitter phase of cosmic expansion when the source of the gravitational field is a viscous fluid. Different inflationary scenarios related with reheating and decay of mini-blackholes into radiation are investigated using an effective fluid described by time--varying thermodynamical quantities.Comment: 17 pages, LaTeX 2.09, 2 figures. To be published in Classical and Quantum Gravit

    Precipitation Model Validation in 3rd Generation Aeroturbine Disc Alloys

    Get PDF
    In support of application of the DARPA-AIM methodology to the accelerated hybrid thermal process optimization of 3rd generation aeroturbine disc alloys with quantified uncertainty, equilibrium and diffusion couple experiments have identified available fundamental thermodynamic and mobility databases of sufficient accuracy. Using coherent interfacial energies quantified by Single-Sensor DTA nucleation undercooling measurements, PrecipiCalc(TM) simulations of nonisothermal precipitation in both supersolvus and subsolvus treated samples show good agreement with measured gamma particle sizes and compositions. Observed longterm isothermal coarsening behavior defines requirements for further refinement of elastic misfit energy and treatment of the parallel evolution of incoherent precipitation at grain boundaries
    corecore