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A thermodynamic approach to rapid phase transformations within a diffuse interface in a binary system is
developed. Assuming an extended set of independent thermodynamic variables formed by the union of the
classic set of slow variables and the space of fast variables, we introduce finiteness of the heat and solute
diffusive propagation at the finite speed of the interface advancing. To describe transformations within the
diffuse interface, we use the phase-field model which allows us to follow steep but smooth changes of phase
within the width of the diffuse interface. Governing equations of the phase-field model are derived for the
hyperbolic model, a model with memory, and a model of nonlinear evolution of transformation within the
diffuse interface. The consistency of the model is proved by the verification of the validity of the condition of
positive entropy production and by outcomes of the fluctuation-dissipation theorem. A comparison with exist-
ing sharp-interface and diffuse-interface versions of the model is given.
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[. INTRODUCTION sound absorption of liquid helium. In its well-known form, a
) ) o formal variational approach was established by Ginzburg and
A classic free-boundary problem introduces, within the| andau for the phase transitions from the normal to the su-
context of phase transformations theory, the model of phasgerconducting phasg8]. On the basis of this approach,
interface with a zero thickness. Within the scope of this probiffuse-interface models with order parameters have been de-
lem, a sharp discontinuity in the propertiés a jump of veloped by Halperin, Hohenberg, and Ni@]. They apply
fluxes and thermodynamic functionsccurs across the inter- these models to the theory of critical phenomena. In addition,
face. The sharp-interface model has been successfully usédlen and Cahn apply the same models to antiphase domain
to describe many physical phenomena in various sysféins coarsenind 10].
However, the sharp-interface model has difficulties in de- A diffuse-interface model has also been developed for a
scribing situations when the interfacial thickness becomegescription of phase transformations of the first order, espe-
comparable with the characteristic length of the considere@ially for the solidification phenomenon. The diffuse-
phenomenon and when a topology of the interface becomd§terface model of solidification incorporates an order pa-
complicated or multiply connected. To surmount these diffi-"ameter in the form of a phase-field variabld]. The phase-
culties, an alternative model with a finite interfacial thicknessfi€ld ® has a constant value in homogeneous phases, e.g.,
was suggested for explaining phase transformatj@hs ®=-1 for an unstable liquid phase. This phase is trans-
Historically, the first formulation of basic principles of fohrmed !”tohth.e soflld_plhase_ W'tﬂ;'Jr%' Be]fi\g'%gﬁ these
diffuse interfaces was given by Poisson, Maxwell, and Gibbd'2s€s In the interfacial region, the phase anges

b ! : . steeply but smoothly from -1 to +1. Numerical solutions
3] who suggested an interface be considered a region with : o ; -
1Ein]ite thick?]gss in which a steep but smooth tragsition 0 low one to avoid explicit tracking of the interface and to

locate the interface ab=0 [12]. As a particular case, the

e;Shase-field model is reduced to sharp interface lirfilt3]

and is consistent with major models of sharp interfezech
Hele-Shaw type models, classical or modified Stefan

oblem, etg. The phase fieldb is considered as an order

arameter which is introduced to describe a moving interfa-

Waals, and Kortewed4] applied thermodynamical prin-
ciples to develop the gradient theories for interfaces with
nonzero thickness. Through the past century, these ideas
diffuse interface were refined and applied in many physicaE
pher)omen_z(see, €.9., OVerviews in Reb)). . ) cial boundary between an initially unstable phase and the
Diffuse-interface formalism has been widely applied tog ., phase.

phase transformations in condensed media. The first intro- g\ era| thermodynamically consistent phase-field models
duction of the diffuse interface into the theory of phase transy ove been proposdd4—17). These include the models for a

formations was made by Landau and KhalatniK® by 4nsormation in a pure systeibd] as well as rather general
borrowing a formalism of the Landau theory of phase tran-

o ) . models of multiphase transformations in multicomponent
sitions[7]. L'a.mdau and Khalatnikov labeled dlfferent phasessystems[l?]. All of these models assume local equilibrium
by an additional order parameter to describe anomalou

M a system, consistent with the basic hypothesis of classic
irreversible thermodynamid€I1Ts) [18,19. This assumption
leads to an examination of a number of transport processes
*E mail address: Peter.Galenko@dlr.de with small and moderate deviations from thermodynamic
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equilibrium. As a consequence, a relatively slow movementalid description of a nonequilibrium state. This problem has
of the interface can be predicted. In principle, such an apbeen discussed extensively in the literat(gee references in
proach can be extended to a case characterized with a locdile bibliographic overview28]). A selection of the basic
violation of the condition of equilibrium at the interface, state space with the inclusion of dissipative fluxes is formu-
such as for solute trapping and kinetic effd@8]. However, lated in EIT[24] and tested against experimental dg2f].
local equilibrium is missing both at the interface and within Accordingly, we extend the classic set of independent ther-
bulk phases for cases of rapid transformation, such as rapitiodynamic variables by the inclusion of dissipative fluxes as
solidification[21]. In this case, the description of rapid phaseadditional basic variables.
transformations can be provided by a formalism of extended CIT is based on the local equilibrium hypothegis8,19
irreversible thermodynamic$EITs) [22]. This formalism  which assumes an instant relaxation of fluxes to their steady-
gives a causal description of transport processes and abastate values and describes the ensemble of atoms within local
dons the assumption of local equilibrium. An extension ofvolumes by the Gibbs-Boltzmann statistics. In the standard
the phase-field methodology for a rapid transformationformalism of the diffuse-interface using CIT, the € of
which is caused by a significant deviation from a thermody-ndependent variables is assumed to consist of conserved
namic equilibrium, has been made receffg]. variables, such as energy denséf,t) and concentration
The main purpose of the present paper is to describe #(f,t)=Xg/(X5+Xg) of the B component in the system, and
thermodynamically consistent model of rapid phase transforthe nonconserved phase-fieldr’,t) variable(wheret is the
mation in a binary system under local nonequilibrium condi-time andr is the position vector of a point within syst¢gm
tions. Using the phase-field methodology, we derive governThjs can be expressed formally &8}={e, X, ®}.
ing equations compatible with the macroscopic formalism of The extended space of the independent variaBeis

EIT and the microscopic fluctuation-dissipation theorem.  formed by the union of the classical se} and the addi-
The paper is organized as follows. In Sec. I, athermody-tional spacdF} of the fl f heafi and solute]. and al

namic description of the considered system is given. We in- pac ofthe fluxes of heagj an Solute’, and also

troduce dissipative diffusion fluxes for heat and mass trans® raéteaof changexd/dt of the phase-field variable, i.e.,

port together with the phase-field rate of change, both a$F}={d,J,d®/dt}. This yields

independent variables. In Sec. lll, the generalized Gibbs .

equation and an entropy balance applicable to a rapid ad- E={C} U{F}={e X, ®} U {q,J,od/dt}. (1)

vancing of diffuse interfaces are given. As a starting point for .

the present phase-field model, an entropy functional is usetfere {F} is the space of the fast non conserved thermody-

in Sec. IV. The analysis of the present phase-field modehamic variables.

leads to governing equations for a hyperbolic system with There are, in fact, different possible choices of variables

dissipation_ In Sec. V, a genera"zation of the hyperbo"c(ﬂuxesl|n EIT, mICI’OStI‘UCtU_r.al det§lI|S in theories with inter-

phase-field model is given using flux relaxation functions, agal variable and the specific choice to be adopted depends

well as a variational principle. In Sec. VI, model equationson the aims of the description and on the problems to be

are compared with the outcomes of existing sharp-interfac@nalyzed. This does not mean that different choices of vari-

and diffuse-interface models. Finally, in Sec. VIl we presentables are incompatible. For instance, in the study of flowing
a summary of our conclusions. polymer solutions one may select as independent variables

either the viscous pressure tensor or the conformation tensor
describing the average microstructure of macromolecules of
the system: a Legendre transform exists. This allows one to
A. Thermodynamic variables pass from one description to the other: similar to the way it is
npossible to pass from a description using internal energy as
independent variable to a description using absolute tempera-
ture as an independent variable in equilibrium thermodynam-

II. DESCRIPTION OF THE SYSTEM

Let us consider an isobaric binary system at a nonunifor
temperaturel with no convective flow and with given con-
centrations of atomé andB. The local equilibrium hypoth- .
esis establishes that local and instantaneous correlations [30]. . .

. Thus, our choice of fluxes as variables does not exclude
among properties of the system are the same as for the whoIeEh ' ibilities. To iusti hoice. th . q
system at a global equilibrium. Describing the nonequilib-O er possi L' 1€s. 10 Jus ify our C oice, the meaning an
rium system as an ensemble of small local volumes in afélévance of, J, and J®/dt as variables should be recon-
internal equilibrium, CIT is applicable to processes not toosidered on qualitative grounds. Fluxgsand J describe ex-
far from the equilibrium[19]. In addition to CIT, a local changes of heat and matter between an interface and the
nonequilibrium formalism applicable to strongly nonequilib- neighboring bulk phases. The fluxes do not follow instanta-
rium systems has been developed in past two decade®ously classical Fourier and Fick laws. It takes them some
[22,24—28. As a phenomenological theory, this formalism is time (usually rather shorto reach the value predicted by the
well-known as extended irreversible thermodynamics, ElTclassical transport equations. Obviously, when the interface
[22,27]. This formalism goes beyond the hypothesis of localmotion is fast enough, delay effects in the dynamics of fluxes
equilibrium and avoids the paradox of a propagation of distnay play a determining role. This happens, for instance,
turbances with an infinite speed. when the velocityV of the interface becomes comparable or

A fundamental problem in attempting to describe systemdigher thanl/ 7 (I being the mean-free path of the particles
out of equilibrium is to select relevant variables needed for and 7 the relaxation time of fluxgs Thus, in these circum-
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stances(j andJ behave as independent variables with theirinterval of 10*s<7,<10™" s in a binary alloy system or
own dynamics, which has important consequences for théorganic solutior{34]. In addition to this, the timeg, might
dynamics and stability of the interfa¢g1,32. be evaluated numerically from E@2), assuming that the
The introduction ofé®/at as an additional independent lengthl=W, (the width of the diffuse interfageand the ve-
variable is motivated by a similar, though slightly different locity V (the characteristic velocity for rapid adiabatic trans-
consideration. Indeed, the space variationdofis related, ~formations are known. Thus, for numeric evaluation®fin
among other factors, to the width of the interface. Thus, in-2 pure system, one may accept the following expression:
cluding 9@/t as an independent variable allows for a more 70 = Wox/(1416Q) 3)
detailed description of both internal kinetics and shape of the @ = ToXTi Ao,
interface. In the same way as in Newtonian mechanicsvhereQ is the heat of transformatiory, is the heat capacity
(where the initial position and velocity of a particle must be (so that relatiorQ/ x is considered as the characteristic tem-
specified to determine their evolutiprhere we take botld perature for adiabatic transformatjorand w is the coeffi-
and o®/at as independent variables. If inertial effects arecient for atomic kinetics. Taking the values for pure nickel,
sufficiently low in comparison with dissipative effects, e.g., Q/x=418 K [35], uo=0.52 m{s K) [36], and Wy=5
a®/at will be determined directly by a dynamical equation X 10° m, one getsr,=2.30x10°*s. This value forrg,
in terms of® and its gradient. Otherwis& and d®/qt will agrees with the time of the diffuse-interface kinetics which
be independent and an equation /> must be found. might be calculated from the “thin-interface” analyses of
The above discussed choice of variables leads to two setéarma and Rappdl37], extended by Bragardt al. [38].
of independent variables as follows. Variables from the set It is also reasonable to evaluate the relaxation time for the
{C} are characterized as the slow variables. Their behavior iphase-field in a binary system using the outcomes of the
governed by conservation laws for energy and solute concephase-field model via “thin-interface” analyses presented by
tration plus an evolution of the phase field. They decayKarma and Rappdl37] for pure substances and by Karma
slowly in time. In contrast, the independent sp4E¢ con-  [39] for isothermal solidification of dilute binary systems.
sists of nonconserved variables with a relatively high rate ofNamely, for nonisothermal solidification of a binary system,
decay. The variables frodF} differ from their classical val- Ramirezet al.[40] derived the timerg, for the phase-field as
ues during the time intervals of the order of magnitude ofa function ofX and®. It is described by

characteristic times; for the relaxation of the heat flux, sol-
ute diffusion flux, and rate of change of the phase-field vari- - - V\_/f,(i + alaz%[@ + MD (4)
able, respectively. For time intervals much longer than the ' \ o Dlay 1+k-(1-ko

relaxation timesr;,

ignored the rate of variation of the fluxes can be For numeric evaluation, we accept the following material

parameters for a Cu-Ni metallic system: diffuse-interface
L width Wp=1x10°m, Gibbs-Thomson coefficienf=1.3
B. Relaxation times X107 Km [41], atomic kinetics coefficient uq
Generally, relaxation timesg represent physically reason- =0.24 mA{s K) [41], constants a;=0.8839-- and a,
able time estimations for a spontaneous return of a system t00.6267-- [37], solute diffusion constard=3Xx 10° m?/s
the steady state after a sudden perturbation. Relaxation tim@41], thermal diffusivity a=1.5x 10" m?/s [41], adiabatic
7r and 7, for the heat and solute, respectively, can be contemperature(a relation of latent heat and heat capacity
sidered as times needed for smoothing of inhomogeneities @/ y=402 K [42], slope of the liquidus line m
temperature and concentration, respectively, by diffusion=4.38 K/at. % [42], and solute partitioning coefficierk
The time 74, of the relaxation for the phase-field can be =0.81[42]. As a result, using Eq(4), one getsr,=7.92
evaluated from the velocity of the diffuse interface moving x 107! s for the values oX=70 at. % andbP=0.5.
through the local volume with the characteristic spatial Values for relaxation times for some pure and binary sys-
length. Consequently, the rate of decay of the heat §ux tems are summarized in Table I. It can be seen, e.g., for

solute diffusive fluxJ, and phase-field rate of changé/at ~ Metals and alloys, that even though the heat spéeds

are estimated by the following characteristic times: much larger than the solute diffusion spetg, relaxation

5 > times forg andJ may have the same order of magnitude, i.e.,
mr=a/Vy, o =DVp, 79 =11V, (2 71~ 1. Therefore, the front of the heat profile moves with a

wherea is the thermal diffusivityV; the finite speed for heat SPeed much higher than the front of the solute diffusive pro-

diffusion (i.e., the speed of propagation of temperature disfile. However, due to the fast thermal diffusiom> D, the

turbancey D is the solute diffusion constan¥ is the finite ~ relaxation of the heat fluxj proceeds at approximately the

Speed for diﬁusior{i'e', the Speed of propagation of concen- Sam? characteristic time as the relaxation for solute diffusion

tration disturbancesV is the velocity of the diffuse inter- flux J.

face, and is the spatial length.

For instance, the times is defined by phonon-electron Ill. ENTROPY APPROACH

and phonon-phonon interactions for heat diffusion in metal-

lic systems and it is estimated in REB3] to be in the range

of 108 s< 7 <101!s. The timer, is defined by the time For the local nonequilibrium system described in Sec. I,

for diffusion jumps of particles, which varies within a wide we postulate an existence of a local generalized entropy den-

A. Generalized Gibbs equation
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TABLE |. Relaxation time for the fluxes of heat, solute diffusion, and phase field.

System 71 (9 o (9) 79 ()
Carbon tetrachloride 2.5010°13 Ref.[43]
Benzene 1.2% 10718, Ref.[43]
Nickel 1.20x 1071, Ref.[44] 2.30x 1071, Ref.[45]
Diluted alloy Ni-0.7 at. % B 1.54 10711 Ref.[46]
Concentrated alloy Cu-30 at. % Ni 0.¥8L0°1L Ref.[47] 7.92x 107! Ref.[48]

sity s. The related set of variables is the extended sjiabg  cifically leading to the sharp-interface asymptotic liménd
Eqg.(1). The generalized Gibbs equation fois described by  Q is the heat of the transformation.
After integration, the generalized Gibbs equati&h can

ds(e, X, @,,J,d0/at) = ds,(,X, ) + ds,d§,J, db/at) be written in the form
JSe ISe JSe OShe - .= -
= —de+ —dX+—dd+—-d e X, ®,q,J,0P/dt) = s.(e, X, D) + ,J,0D/at),
e let S dX+— dP + pe q S( q ) = sl ) +Sheq )
Sne 2 ISne (ﬁ(l)) L2 ag. . ajz = g(é<o"(l)>2
+ -dJ+ dl — . 5 ,J,00/dt) = - q-—J-J- — . 8
pr ool \ ot 5 Shel(d )=-20-d-7 >\ ot (8)

In Eq. (5), ¢ is a local equilibrium contribution defined on Consequently, we arrive at a generalized entropy density
the set{C} of the classic slow variable@, X,}, ands,eis  9IVEN by an expansion around its local equilibrium value up
the flux-dependent purely nonequilibrium part of the gener-to second order in fluxes. At the limit of infinite speetis
alized entropy defined on the spaffé} consisting of the _"60' IVD_)OF]’ andV—>torT),tone getsTTr]—>0, TDd_I)E%S?anLD
fluxes{q,J,od/ 4t} as the independent fast variables. - I Such a case, The fersge vanishes an gives

the entropy densityg.(e,X,®) for a local equilibrium sys-
The derivatives of the entropy density, formulated with Py el ) q 4
respect to classical variables and their fluxes appearing in Eq.
(5) are described by

0 1 05 Ap B. Entropy balance
e T X T For a system described by the extendedssef variables,
Eq. (1), the local balance laws for the energy and concentra-
tion are given by
17 Js [Z;
Be_ (1 -x) 28 4 x 2B
0P 0P oD Je - X >
—+V.g=0, —+V-:J=0, (9
ot ot
9Sne _ = OSne _ 37 - [r :
oG =—agq, 3 =-qd, and the evolution of entropy density is defined by
J
s >
—+V - Js=os. 10
P o © P s=0s (10
— o,
APl at) a A change of the total entrop$ in time t is described by
where Au=pus—pg is the difference of chemical potentials ds (ds ds
for componentA andB, respectively. The entities, andsg —= (—) (—) , (12)
are the entropies for pure componeAtandB, respectively. dt dt/ex \dt/iy

The chemical potentials and entropies of components can hghere
chosen for every concrete systésee, e.g., Ref§15,17)).
- _ . ds ) .
In Egs. (6), the coefficientse; are scalars which do not ( ) :_f v o = _f 3o fido (12)
ex v w

depend org, J, anddd/at and are assumed to be dt
= (1) o :1<0(A,U«)> represents an external exchange of entropy due to the en-
T \kT?/ e P TD\ X Jrg tropy flux Jg and
W, ds) _
a¢:<a0ﬁ’T—°Q> : 7 (a)_ —f st (13)
Mo /TXx n v

where « is the thermal conductivitya, is a dimensionless is the internal production of entropy due to the dissipation
factor (dependent on the model of the diffuse interface, spewithin the system. In Eq912) and(13),  is the outer sur-
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face of the subvolume, n is the normal vector to the sur-
face, andog is the local entropy production.

IV. HYPERBOLIC PHASE-FIELD MODEL

In this section, an important class of hyperbolic models

with dissipation is considered. For involved variables we will
formulate explicit evolution equations including the relax-
ation terms.

A. An entropy functional

Now we use an entropy functional of the following form:

2 2
S= f {S(e,x,d%ﬁ,la@/at) - %| Ve- %| V X2

2
- 52@| V<D|2}dv. (14)

Heree,, &, ande, are constants for the energy, concentra-

tion, and phase field, respectively. In the functioia) the
gradient termgVel?, |VX|?, and|V ®|? are used to describe
a spatial inhomogeneity within the fields according to previ-
ously formulated diffuse-interface mode[8,10,13. It is
logical to include gradient terms in EQL4) (of the so-called

PHYSICAL REVIEW E 71, 046125(20095

s
+ [
A odlat) at?

(16)

whereq, andJ, are diffusion fluxes in the direction of the
normal vecton.

Using Eq.(6), the change of the entropy, Eq41)—(13),
can be obtained from Eq16). This yields

((j:ItS j,,, Jdw + fv o, 17)

where

2
e

=&

oe s X
(E>Vne+ (&_e + sgvze)qn + 8)2(<E>VHX

Js P
+ (5 + aivzx)Jn + 8$<E>Vn¢’

Js

(18)

“Ginzburg-Landau formJ because, as stressed before, our
interest is focused on interfaces with steep gradients. In ads the projection of the entropy flux vector on the normal

dition, the extensioiil) gives the entropy densitybased on
the fluxesg, J, andd®/t as independent variables.

To obtain an evolution of the entropil,1) and to consider
several parts of the entropy transfé®) and(13), we differ-
entiate Eq.(14) with respect to time. Combining the terms,
after some algebra one obtains

o[- o
-<

ds

IS
[| 2+

s
&e

aJs

J 2o f[2

aq

H

ot

+

e
25 \at) s\ a2 ) |70 ) [P at)

o X )
+e \Y X+8¢ P VP |dw, (15
whereV, is the gradient vector in the direction of the normal _
vectorn.

Now we substitute the balance laws for energy and cong
centration, Eqs(9), into Eq.(15), and then use the theorem
of divergence. One gets

ds de

aJs
a=‘fw{%(m)v o[ Bretrefanred
; o
+<—S+8XV2X>J +g¢< )VnCD}dw
X a
ds 49

s
+ G- V| —+&2v2e|+—=
J,, a [&e % } at

-

aq

vectorn and

>

+J-

s
lV ( — + s)Z(VZX)
oX

5 PP
P +e5V2D ~ ay_7 >0 (19

is the local entropy production which has a bilinear form in

terms of fluxegq, 3, andgd/gt) and their respective conju-
gate forceqthe expressions inside the square bragkets

B. Governing equations and thermodynamic
consistency

Relation (18) is well known from the phase-field model
that is based on ClTsee, e.g., Refl15]), whereas the en-
tropy production(19) includes additional terms agdq/dt,

aJ/at and -a,*®/ ot? related to the nonequilibrium part
of the generalized entropy. This structure is due to a special
form for entropy, Eq(8), and has a clear physical meaning:
far from equilibrium, dissipative fluxes provide ordering that
leads to a decrease of entropy production near a steady state
when compared with the local-equilibrium state character-
ized by same values & X, and®.

As a consequence of the second law of thermodynamics
the productionsg of the generalized entropit9) is positive.
This condition implies a relation between fluxes and forces
which, in the simplest cases, is assumed to be linear. For Eq.
(19), the following set of equations can be formulated.

Evolution equations for heat and solute diffusion fluxes
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s o PP 9D IS o
R V(&—e+sevze)—aqg T¢?+E—M¢ £+8¢V® , (26)
(=M) A (20)
J V(ﬁ + s§V2X> _ aja_J wherea-_¢:a¢M¢ is the time scale 01_‘ thg phazse—field kinetics.
X ot According to Eq.(26), the acceleratio@“®/ it of the phase

field appears due to the introduction of babhand dd/dt as
independent variables. The acceleration characterizes inertial
ET0)) IS o PD effects inside the width of diffuse interface.
s =M, b +e, Vo - Y 2 | (21) The derived equation&4)—(26)are the central outcome
of this study[or, to mention a more complicated setting, we
where could also refer to equatiorf&0) and(21)]. One role of the
relaxation times is clear: they characterize the delay with
Mee MEX
a2

and evolution equation for the phase field

(22) which g andJ reduce to their classical form{svhich corre-
spond to the classical transport equatjofarthermore, this
delay indicates a loss of inertial effects in the dynamics of

is the matrix of mobilities for thermal and solutal transportthe interfacial region. Relaxation terms may be neglected in

andM¢ is the mobility of the diffuse interface. The interface many circumstances, but become crucial in some important
mobility is assumed to be dependent on composition as  sijtuations. For instance, they lead to a maximum possible
value for the speed of advance of the interféioecontrast to
M¢:(1_X)M2+XM3>O’ (23 the classic thgory which allows for an infinite speed of
whereM’, andM3 are the interface mobility for the transfor- propagation Moreover, they lead to the possibility of oscil-
mation in pure systems consisting &for B components, latory phenomena appearing within the domain of the inter-
respectively. In various formulations of the phase-field modeface. Thus, the role of new terms is not simply to add some

[20,37, the mobilities ofM% andM? are proportional to the Nnew undetermined parametdis., the relaxation timgsal-

atomic interface kinetic coefficient, and inversely propor- lowing for an improved fit with experimental results. These

tional to the interface widtiW,, so thatM ,~ uo/ W, terms play an important conceptual role, because they open
The matrix(22) of both transport and the interface mobil- the possibility for a drastic change in behavior of the mod-
ity (23) is assumed to be positively defined for positive en-€led system.

tropy productionos, The matrix(22) can be considered as ~ Some comments on the consistency of the proposal for-

symmetric, so that it can be regarded as being positive, i.emulated in this study can be outlined. First of all, we may

MoV > ng Note that linear phenomenological laws im- refer to its internal consistency as a thermodynafmeacro-

plied by Egs.(20) and (21) assume validity of the represen- SCOpig theory. Second, one must check its consistency with

tation theorem of isotropic tensofd9]. According to this respect to microscopic descriptions based, for instance, on
theorem, the fluxes and forces of different tensorial rank ddinetic theory, linear response theory, or other statistica

not couple as long as linear relations are invol¢ad inde- ~ Croscopig theories. Furthermore, one must check its consis-

pendence of processes of different tensorial rank known a§ncy with experimental results.

the Curie principle In our case, vectors of heat and solute Here, we comment on the internal thermodynamic consis-

diffusion fluxes cannot lead to the flux of the scalar phasdency first. In the next section, we refer to its consistency

field in a linear description. More complicated nonlinear re-With respect to a statistical theory that is based on the
lations between fluxes and forces, consistent with positivdluctuation-dissipation theorem. In this theoretical paper, we
entropy production in EIT, are considered elsewheredo not refer to experimental results. We assume that a con-

[22,24,21. sistent nonequilibrium thermodynamic theory should satisfy

For simplicity, we ignore both kinds of “cross coupling” two main conditions:(i) generalized or extended entropy
effects in Eq.(20), so thatM.,=M,.=0. Then, a substitution Must be at a maximum in the equilibrium stati) entropy

of the fluxes from Eq(20) into the balance$9) gives the  Pproduction must be positive. To these two conditions, one

governing equation for energy density could add two more requirementsii ) the second differen-

e o o tial of the entropy with respect to its gasic variabledich is
ot ®_ . oS | ou2 related to the dynamics of the variablesust be negative in

T v {MeeV (ﬁe+8€v e)] (24) order to lead to dynamically stable solutions afin) the

. . . generalized equations of state obtained by a differentiation of

and the governing equation for solute concentration the generalized entropy must have a physical meaning that

PX oX IS oy would be consistent with experiments.
2t T VI MV xt e VX||, (29 It can be seen immediately that the essential conditions
and(ii) are satisfied in our proposal. Indeed, the fd8nand

in which 7r=aqM is the relaxation time for the heat diffu- (14) of the entropy guarantees that the homogeneous equilib-

sion flux, and7p=a;M,y is the relaxation time for solute rium state has the maximum entropy as compared to non-

diffusion [see Eqs(2) and Table ]. After simplifying, Eq.  equilibrium states with the same local valuespX, and®.

(21) leads to the governing equation for the phase field Furthermore, an introduction of constitutive equatid@6)

Mxe MXX
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and (21) into the expressioiil9) of the entropy production 1 d(ft) t RS (SR
yields a definite positive expression M_QST = —J Dy(t-t)———dt, (30

q ID\2 where Dg={Dq,D;,D,} are the relaxational kernels for the
os=(G,J)(M)™* + M;}(—) > 0. (27)  fluxes and the variational derivatives are obtained from the
j A following expressions:

_ ) ] 8S_ds 5 o S _ds 5 5
As we noted earlier, the transport matfix1) and the inter- —=_—+g Ve —=-+e VX
o L . oe de oX X
face mobilityM , are assumed to be positively defined for a
positive entropy productiows>0. If one includes higher-
order nonlinear terms into the entrof8) or in the constitu- S5 -5 + 82V2D . (31)
tive equations(20) and (21), thermodynamic consistency s s ¢

would be more difficult to verify than in our second-order
approximation8). This approximation though is sufficient to
deal with a wide range of physical problems.

After substitution of expressions for the heat flux relax-
ation (28) and the solute diffusion relaxatiof29), into the
balance laws for energy and solute concentrat®nrespec-

We shall not deal with conditionii) and (iv), which are tively, one can obtain the following integro-differential equa-
more subtle and typically involve nonlinear effects. For antiongj 9 9 q

indication of an approach to their analysis in some situations

involving only g as nonequilibrium variables, the reader is Je(r 1) t NS (i

referred to the monogragdi24]. . v f Dy(t-t)V Se dt,

V. GENERALIZATION OF THE MODEL IX(Ft t . 0 .
ET):—V-f Dj(t—t)VﬁTjdt. (32

The governing equation&4) and (26) present a causal

propagation of heat and mass signals and indicate qyether with relaxation of the phase figla), the general
dissipative-wave advance of a diffuse interface. We generaléystem evolution during the phase transformation is de-
ize these equations into the so-called evolution equati°n§cribed by Eqs(32)

which are nonlinear in time. First, the equations of state are
considered from the point of view of the relaxation functions
for the fluxes. Second, the nonlinear evolution equations of
general type are derived from the variational formulation.

When the relaxation functionBg are specially defined,

Eqgs.(30) and(32) can be reduced to known models. Specifi-
%ally, for an important class of dissipative and hyperbolic
models, one can take the relaxation kernels in the following

forms:
i i 4
A. Relaxation functions for the fluxes Dg(0) = const, wave propagation,
Let us take into consideration a prehistory of the change . o
of the phase field at a point of a system. Such a prehistory Dr(0)o(t-t), dissipation,

must be taken into account if the system is not in a local DR:<

equilibrium. We shall use a functional description with a
memory function.

We use the entropy functionél4), as before, to derive (33)
the equations of the model. In the absence of local equilib-
rium, one may incorporate the prehistory of the diffusionwhereDg(0)={D4(0),D;(0),D4(0)} are the relaxational ker-

process. Subsequently, connections between the fiGixds hels for the fluxes at the present timet’, and

t-t
DR(O)ex;<— —) wave and dissipation,

\ 1

and /4t from the one side and driving forcd&8S/se),  ={7r,7p, 7o} are the characteristic relaxation times for the
V(58S 5X), and 8S/ 5@, from the other side, are defined by fluxes. _ o . _
the following integral forms. Relaxation of the heat flux Different transformations within a diffuse interface are

described by different kernels in the integré28)—(30). As it
follows from Eqg. (33), the relaxation function®g describe

t *
q(r,t) :J Dq(t—t*) \v, Mdt*, (28) the memory of the system by assigning different weights to
- oe different moments in the past. The dissipation corresponds to
a zero-memory transformation, i.e., the only relevant contri-
relaxation of the solute diffusion flux butions are the“last’ones. In contrast to this situation, the
infinite memory transformation witlDg= const leads to an
. t .88t . undamped wave propagation of the heat, solute, or the inter-
J(r,t) :J Di(t-t)V Tdt , (290  face advancement. In between, the combination of the wave
- and dissipative regimes described by the exponentional law
can be observed during rapid phase transformations. This is
and relaxation of the phase-field rate of change the case of a hyperbolic phase-field model described in Sec.
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*

IV. For the latter case, the relevance of all contributions to . 1 ~ = t—t

the fluxes decreases as the system moves to the past. Dj(t-t) = k—T<J(0)J(0)>quXP<‘ T_) (35
In Sec. IV, the macroscopic consistency of the statements 8 b

of EIT has been shown. Now, the consistency of our macrowhich may be rewritten as

scopic approach is verified with microscopic description. It is .

related to the consequences obtained from the fluctuation- Dy(t-t)=D (0)exp<— ﬂ)

dissipation theorem. 4 K T
The memory functions introduced in Eq&8)—(30) may

be related to our analysis of the dynamics of the fluxesd

J and of 9/t proposed by constitutive equatiof®)) and
(21). To do this, first, we may consider the fluctuation- R
dissipation theorem by relating the response memory funcindeed, when the microscopic expressionsdandJ (cor-
tions to the time-correlation function of the correspondingresponding to an ideal gaare introduced into E¢36) and
fluxes (see, e.g., Ref50]). This will allow us to show the an equilibrium averaging is performed over a Maxwell-
consistency of our macroscopic formulation with the micro-Boltzmann distribution function, the results for tbg(0) and
scopic basis provided by the fluctuation-dissipation theoremD;(0) became equivalent to those obtained from the kinetic

Dj(t-t)= Dj(O)exp(— %) (36)

D

The corresponding expressions are theory of gases in the time-relaxation approximati6fy.
Note, finally, that the transport coefficier(thermal con-
Dy(t-t) = %@(t)&(t*»eq, ductivity, diffusion coefficient may be obtainedwhen the
kgT relaxation time is sufficiently shortby integration of Eqg.
(34), as
. 1 ~ = . o
Di(t—t)=—={J(t)J(t i 1 PO
t=t) kBT< (DI ))eq )\:ﬁf (GGl
B —o0
Dylt-t) = —— (DD (34) 1 (" s~
¢ keT'+ e D= — f (J(H)3(0))edt, (37
B —o0

Herekg is Boltzmann’s constant, 5, andg,® stand for the .
microscopic operators for the heat flux, diffusion flux and theWhich are the well-known Green-Kubo formulas for trans-
time derivative of®, respectively; and...)o; means an av- port coefficientd 24,50,5]. Thus, our macroscopic formal-

erage over an equilibrium ensemble in statistical mechanict m1s conlstlstent.;wth thefmlf[:roscohplc quctuaItlon-dllSS|pat|t|)n
(as, for instance, the canonical one eorem. It provides, in fact, a phenomenological comple-

Relations(34) play an important role in modern statistical ment to fluctuz_ition-dissipation _exp_re_ssions, Wh_iCh are the
mechanics, and may be formally derived from the LiouviIIeformal expressions. Note that it is difficult to obtain on exact
equation in the framework of the linear-response theory Oprounds. the form of the memory functions from these formal
from information theory[50,51. However, from a practical €XP'eSSIons.
point of view, a computation of the evolution of microscopic
operators fol, J or 3,® on purely microscopic grounds is an i )
overwhelming task that exceeds the actual capabilities of an We assume, as above, that the generalized entropy density
analyst. Such an evolution is either obtained by computef iS @ continuous and differentiable function defined by the
simulations, or inferred on heuristic grounds. Thus, our evolocal equilibrium contributiors, and the flux-dependent non-
lution equations(20) and (21) for g, 3 and g® may be eqU|I|br|_um par_tsnewnh the_z total set of variablefl) ar_1d the
considered within the scope of macroscopic modeling of th eneralized Gibbs equatiof). The balance equations for

evolution of fluxes, which according to E(4) is equivalent he hgat and solute are the_same, E@?’ and the local

to a proposal form of corresponding memory functions intro—eVOIUtlon of _the'entropy density is descrlped by E( ).

duced in Eqs(28)—(30). In general terms, it could be said .Agenerallzatlon can 'be formulated by mtroduqng gener-

that, according to Eq(34), the study of the evolution of the alized terms for derivatives of the entropy derlsny with re-

fluxes in the neighborhood of the equilibrium is equivalent toSPect to classical variablés, X, ®) and fluxes(q, J,d®/ ),

the determination of the corresponding memory functions. @s well as by introducing the general forms of the entropy
Constitutive equation$20) and (21) imply that fluctua-  flux J5 and the sourcerg in Eq. (10). Depending on their

tions of G andJ near a homogeneous equilibrium state will own tensorial character, these are

B. A variational principle and Euler-Lagrange equations

d(icay exponentially asq(t)=¢(0)exp(-t/r) and 5(t) s\ . s\
=J(0)exp(—t/ 7p). Introducing these expressions into E84) ge) Bi(ely), X 5— BL(X 1)),
one obtains a
1 ~ - -t s D s o R
D t_t* = _)0-)0 - |, <_) :B ((I)vl( )! <__>) :B(eal)qy
ot~ 1) = (a0l )>elep< - ) 3 ) P i) Ge ) = Pal@la

046125-8



DIFFUSE-INTERFACE MODEL FOR RAPID PHASE PHYSICAL REVIEW E 71, 046125(20095

o"S X1 J e e = eaq) = e
a3 =B i o dv| (Bz=pDV g+ BzE"‘Vﬁg 0= pBs
. a3 . ob
( s ) @™ + (B3~ T)V-J+<B§E+VB§)-J—@+BTE
HIDId) ) T2 w (L .
) D (9 D
+B3V (Bz VB§> ﬁi] =0. (42
- ] - oD
Js=B5elg)q+ B3(X,1;)d+ ﬂg(‘b-'mm)g. Variation of Eq.(42) is obtained by taking as constants the

time derivatives, gradients, and divergences. Siritg
=2q-69, 61;=23-8, and &l q4=2(dP/t) 5(od/at) from

os=Bilely) + Bﬁ(x,“) + BI(D, | sy, (38)  Eq.(42) one gets
(?Bg Bl) > Be—>-> ad e
dv| 2| — V- —+V
where fv v{ (alq P (V-g+ ,3 aquq P B3
e @)2 aﬁb] f [ (aﬁé Bl) j
l,=qgq-q9, 1;=J-J, | =\ — 39 -2— + JV-J)+
q—-9-09, |; DIt ( 7t (39 al ] . A A ( ) ,32
. . . X
are the single scalar invariants of the extended (&gtof :32 +V 2'9_:34 j] 8]
variables, ang, are the scalar functions depending on clas- alJ ol
sic variableg(e,X,®) and invariantd;. Then, utilizing Egs. o 2
(38), the generalized Gibbs equati¢b) gives the time de- +J d {2ﬂ<@> + 22— 983 ﬁq) e /32 (92(1)
rivative of the entropy density as follows: v N g \ ot N gt ﬁt
0B (oD By 9P | (9P
7s X 11X "2 7(5) FVE 2w
—=B‘i(e,|q) +,82(e Iq)q +B1(X l; )— bt bt
=0. (43
X > (?\J ) (9(1) . . > e
+ By (X, 1) - — + B (D, i) — Due to arbitrary variation 08g, 8J, and8(od/dt), the Euler-
ot Lagrange equations directly follow from E@3). These are
® 9D PD evolution equation for the heat flux
+ By (D, ) — P (40) 5 R .
( ,32+» ,32U> [(‘9133 (931>V q»_a_ﬂzl:|q>
Locally, Eq. (10 is satisfied as a balance law. For the dlg g dlg dlq
entire system, one can postulate an extremal condition in the 1
Lagrangian form£=,(ds/dt+V -Js—og)dv — extr, imply- ="3 VB3, (44)

ing an extremal difference between the “kinetic” part
J,(3slat+V -Jg9dv and the “potential” partf,odv for the ~ volution equation for the solute diffusion flux

whole nonequilibrium system. Then, the entropy density sat- B aBs B . 98] -
isfies the following variational principlg52]: ( P2334 ,8’2(U> {( 3 _ 1) V.J- _4}]
al; a ay 4l al;

0 - 1
55:5f dv<£+ \Y -JS—(TS>:O, (41) =—§Vﬁ§. (45)

and evolution equation for the phase-field

in which the vgnahorz& is carried out.only qn the noncon- 5,353 oD \2 &2<I> (9,3§ I &B(lp I
served flux variableg, J, and @/, i.e., § is taken only P y —,82 M— \Y a + g
over the spacéF} from the set(1) while the variables, X, aPiat ablat abiat
and® from the sefC} remain constant during the variation. aﬂj’
Also, during the variation, the tangent thermodynamic space B
[time and spatial derivatives from the g&j] is fixed. From

this it follows that Eq.(41) is a variational principle of a Wherel{ is the unit tensor of second rank.

@__1 @
}&t_ 2V'83' (46)

N sap1 0t

restricted type. Equat|ons(44)—(46) are the nonlinear evolution equations
Using the balance law®), a substitution of Eqg38) into  for g, J and o®/at and they are of the general form of
the variational principl€41) leads to evolution equation$20) and(21). Indeed, the nonlinearity is
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clearly seen from the following form of these equations:  (31)] in a general form. However, the choice of a thermody-
namic potential might be given for a problem under consid-

L o9 . )
TT(e,q)Eq +G=Mde,q VA, eration.

B. Glass transition, structural relaxation, and phase

-] = . :
TD(X’J)E +J=M,(X,J) V 5, separation

Jackleet al.[56] considered isothermal phase transforma-
tion in the presence of additional slow structural relaxation
variables. Considering the dynamics based on the relax-
ational chemical potential, these authors refer their model to
. . systems with phase separation and to slow structural relax-
where ; and M; are the functions of the classic s}  aiion in polymeric solutions in proximity to the glass transi-
={e, X, ®} as well as nonlinear functions of the fluxes which (o, temperature. Calculations have shown that, even at the
can be found explicitly from Eqs(44)—(46) and relations  egarly stages of phase separation, the equation for chemical

entropy density40) and using variational principle41), we  from the predictions obtained by the classic Cahn-Hillard
arrive to nonlinear general evolution equations for fluxesmodel[54].

oD\ PP P P
%(‘I"z)?ﬁ:“ﬂﬂb(q’ﬂ)vﬁ’ “n

(47), which can be reduced to evolution equati¢@6) and Phase separation during spinodal decomposition may pro-
(21) of the hyperbolic phase-field model. ceed under local nonequilibrium conditions in a solute diffu-
sion field during rapid quenching. As it has been demon-
VI. RELATION TO EXISTING MODELS strated in computational modelind7], rapidly quenched

- . . . liquid mixtures under a decomposition exhibit nonequilib-
It is interesting to note that sharp-interface and diffuse-

. . ; rium patterns, evolving with universalities different from
interface models with relaxation of fluxes have been used t?hose extracted from the Cahn and Hillard model

describe transient processes in various nonequilibrium sys- Local nonequilibrium separation in liquids can be de-
tems(see Ref[53], Chap. 4. Therefore we synthesize here scribed in terms of EIT. In these cases, such description leads

several previous and some very recent results in COMPAnsSqy 5 model for isothermal spinodal decomposition in a binary

with th?. d%velo%ed here hy]Peer:inc rr]nocdSIec. IY’ and.the system[23] (under conditions of large deviations from the
generalized modeSec. ) of rapid phase transformation. e modynamic equilibrium The dynamics of the diffusion

flux J [as a fast variable from the s€fk)] is consistent with
the characteristic time of the local rearrangement of particles

Ginzburg and Landau established their variational prin{atoms or moleculgs or with the time of relaxation of the
ciple for a continuous transition from the normal to the su-diffusive flux to its local equilibrium steady-state value. The
perconducting phasg8]. They used a free energy density model equation for spinodal decomposition of a binary sys-
with a gradient term which has been used in further studietem is the generalized Cahn-Hillard equati@s). It is in the
of many phenomenége.g., in a description of the spinodal form of local nonequilibrium solute redistribution. In this
decompositiorf54] or crystal growth[55]). As a logical ex- case, the dynamics of rapidly quenched decomposition is de-
tension, transition between the normal and superconductingcribed for short periods of time, or for large gradients of
phases can be described with a delay imposed by equatiosbemical composition.
of the hyperbolic mode]starting from the functional of the
form (14)] or using generalized models with a memory, Sec.
VA.

Generally, Eqs(24)—(26) are consistent with the general-
ized entropy density given by Ed8). The equations are The system of coupled evolution equatid@§) and(21)
reduced to the classic equations from R¢&54,59 when  describes, in fact, a process of the phase separation under
the times tend to zero. Furthermore, the entropy deri8ity shear if temperature is replaced by a viscous pressure tensor.
together with the evolution equatiof®0) has been justified In this case, one may get the required condition by defining
microscopically[24,26] for the one-component system and the spinodal line in nonequilibrium stat¢see Ref.[30],
from Grad’s procedure for monatomic gases. Chap. 6. In reduced form, an equation of ty20) or (32),

The choice of thermodynamic potential is important, as itaccompanied with homogeneous Dirichlet boundary condi-
governs the transition from a metastable state to the stabléons, has been introduced to model behavior of certain vis-
one. Normally, the potential for transition is included in the coelastic fluids as well as to predict the velocity of flpy8].
expression for the entropy densitgr for the free energy In addition, an equation of typ@2) is used to predict the
density in a form of a double-well function, or by a mono- wave front in time-delayed reaction-diffusion systems of the
tonically increasing function incorporating nonequilibrium generalized Fisher’s equatip9]. The speed of the traveling
conditions at the interfade,12,3§. In the present paper, we wave depends on the relaxation time, and therefore spreading
do not give an explicit form of, in Eq. (8) and present of the population in a reaction-diffusion system can be pre-
governing equationg24)—(26) [or variational derivatives dicted with great flexibility. One of the consequences of this

A. Superconductivity

C. Shear flow, viscoelastic fluids, and diffusion-reaction
systems
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equation, reduced to equations E@) or (25) for modeling  damped oscillations in an interfacial motion during the crys-
hyperbolic reaction-diffusion systenfsith £,=0 or £,=0, talline coarsening. As opposed to the classic parabolic phase-
respectively, can be considered in an exciting example sug<ield model, the hyperbolic phase-field model predicts these
gested by Fort and Mendez in Rd60] for advance of interfacial oscillations in qualitative consistency with the os-
Neolithic human groups across Europe. They have shownillations on the surface of quantum crystf?], as is the
that hyperbolic reaction-diffusion equations of type of Egs.case with crystallization waves in heliu®3]. From a math-

(24) or (25) predict population spreading during the Euro- ematical viewpoint, a search for the existence and unique-
pean past, in agreement with existing archaeological data. ness of the solution for some well-posed problems of a mo-

tion by mean curvaturéusing the phase-field model with

D. Rapid solidification memory is in progresgsee Ref[64]).
At deep supercoolings in a solidifying system, or at high
velocities of the solid-liquid interface, it is necessary to take F. Complex (dusty) plasmas

into account local nonequilibrium effects in solute diffusion  pacent investigations within the field of compléusty)
phenomena and to use a non-Fickian model for ranspoifiasma physics show that this system exhibits complicated
processes compatible with E[21,41. The problem of rapid  yopayior which depends on the behavior of its “subsystems.”
solidification within the sharp-interface limit is described by Thage subsystems are represented by electrons, ions, neutral
the gene_rallzed Stefan probldthe so-called “self-_co_n5|stent gas, and charged dust particles. All of them have their own
hyperbolic Stefan problem[31,32). The analysis in such ojayation times to reach the local equilibrium: therefore, in-
cases takes into account local nonequilibrium both at thgeactions among them may lead to a delay of relaxation to
interface and within the bulk phases. Consequently, the Spane |ocal equilibrium in a plasma. Moreover, in the electronic
tiotemporal evolution of solute concentration is described bysubsystem of a plasma, local equilibrium does not exist.
the partial differential equatiori25) of a hyperbolic type  g,ch situations stimulate development of theories beyond a
(with &,=0) which takes into account the relaxation of solute |oca) equilibrium [65]. Interactions among different sub-
diffusion flux into the local thermodynamical equilibrium in systems in complexdusty plasmas with a missing local

a rapidly solidifying system. thermodynamic equilibrium in the electronic subsystems

_The phenomenon of an advancement of diffuse-interfaceg, e description of observed experimental data of this sys-
with higher velocities comparable with the solute diffusion o rather complicated.

speed can also be described by the phase-field model with a Experimental results of Morfillet al. [66] related to

relaxation of the diffusion flux23]. It has been shown that 5 aqma observations show unusual behavior attributed to
by choosing the concrete form of entrofgs the thermody-  \yeak collisionless interactions of gases inherent to fluid flow
hamic potentigl one may recover the existing models based i frther possible crystallization of plasma. These results
on the CIT and analyze solidification under local nonequilib-5. gescribed by means of molecular dynamic simulations
rium conditions. [66]. The field approach seems also to be applicable due to
the fact that during transitions in plasma, the characteristic

E. Motion of antiphase domains size of patterns is on the mesoscopic or even macroscopic

In the description of diffuse interface kinetics, Allen and Scalé. The field approach to a heat- and electronically-
Cahn[10] proposed a model for describing the evolution of aconducting fluids has been demonstrated in ionized gases
nonconserved order field during the antiphase domain coar§22] by using the generalized type of Edg4)—(46).
ening. For isotropic interfaces, the gradient flow leads to the
Allen-Cahn equation by taking;=0 in Eq.(26). This equa-
tion is valid in cases of low inertial effects versus dissipative
effects. With a finite relaxation time; and a finite accelera- The diffuse-interface model for rapid phase transforma-
tion #®/t?, Eq. (26) predicts evolution of coarsening with tions in metastable binary systems has been presented. To
relaxation. It is reasonable to say that the generalized Allendescribe the steep but smooth change of phases within the
Cahn equatior(26) is valid for cases of significant inertial width of a diffuse interface, the formalism of the phase-field
effects during motion of antiphase domains. model has been used.

A modification of the Allen-Cahn model formulated for It is emphasized that a rapid phase transformation may
the process of the interface motion by mean curvature with @roceed under local nonequilibrium conditions. In a phenom-
delayed response has been analyzed recently. Rotdt@iln ~ enological macroscopic description, we extend the classic set
[61] developed the phase-field model based on equationsf independent thermodynamic variables by an inclusion of
similar to Egs.(28) and (30). These authors described the dissipative fluxes as additional basic variables. Evolution of
first-order transition with the delayed response of the systerthe fluxes is characterized by their own dynamics with relax-
under conditions of a slow relaxation of internal variables.ation times7z; summarized in Table I. Thus, the extended set
Using the exponential relaxation function for a wave and(1) of variables allows one to describe phase transformations
dissipative modé¢which leads to the hyperbolic phase-field with finite interface velocity comparable or even higher than
model(33)] the dynamics of a perturbed motion of interfacesl/r, wherel is the mean-free-path of particléastoms.
by a mean curvature has been considered. It has been shownEvolution equations for the hyperbolic phase-field model
in Ref. [61] that the internal relaxation effects induce with dissipation are derived from entropy functiond)

VIl. CONCLUSIONS
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based on the extended $&j of independent thermodynamic coelastic or electronically conducting fluids, interface motion
variables. This model yields a definite, positive entropy pro-by mean curvature, rapidly solidifying systems, and reaction-
duction (27), in full agreement with the second law of ther- diffusion systems.

modynamics.

A generalization of the model has been formulated by
introducing the memory functions and using a variational
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Derived equations for an evolution of diffuse interface Barcelona. D.J. acknowledges financial support from the Di-
were correlated with existing models of nonequilibrium recciéon General de Investigacion of the Spanish Ministry of
transport processes and for the systems experiencing phaSeience and Technology Grant No. BFM 2003-06033 and the
transformations. Particularly, we compare our derivationDireccié General de Recerca of the Generalitat of Catalonia
with the models of superconductivity, phase separation, visunder Grant No. 2001 SGR-00186.

ACKNOWLEDGMENTS

[1] Moving Boundary Problems in Heat Flow and Diffusjced- 32, 163(2002.
ited by J. R. Ockendon and W. R. Hodgkit@®xford Univer-  [13] G. Caginalp, Phys. Rev. /89, 5887(1989; G. Caginalp and
sity Press, Oxford, 1995Moving Boundary Problemsdited E. A. Socolovsky, J. Comput. Phy85, 85 (1991).

by D. G. Wilson, A. D. Solomon, and P. T. Bogdé&cademic  [14] O. Penrose and P. C. Fife, Physica43, 44 (1990.
Press, New York, 1998 A. Friedman,Variational Principles  [15] Z. Bi and R. F. Sekerka, Physica 261, 95 (1998.

and Free-Boundary Problen{§Viley, New York, 1982. [16] D. M. Anderson, G. B. McFadden, and A. A. Wheeler, Physica
[2] G. Caginalp, Arch. Ration. Mech. Ana@2, 205 (1986. D 135 175(2000.
[3] S. D. PoissonNouvelle Théorie de I'Action CapillairéBach- [17] H. Garcke, B. Nestler, and B. Stinner, SIAM J. Appl. Math.
elier, Paris, 183}t J. C. Maxwell, inEncyclopaedia Britan- 64, 775(2004).
nica, 9th ed.(1876. The Scientific Papers of James Clerk [18] L. Onsager, Phys. Re®B7, 495(1931); I. ProgogineJntroduc-
Maxwell (New York, Dover, 1952Vol. 2, p. 541; J. W. Gibbs, tion to Thermodynamics of Irreversible Procdssterscience,
The Scientific Papers of J. Willard Gibljsongmans, Green, New York, 1967.
London 1906, p. 55. [19] S. De Groot and P. MazuNon-equilibrium Thermodynamics
[4] Lord Rayleigh, Philos. Mag.33, 209 (1892; J. D. van der (North-Holland, Amsterdam, 1962P. Glansdorff and I. Pri-
Waals, J. Stat. Phy0, 179(1979, translation from the origi- gogine, Thermodynamic Theory of Structure, Stability and
nal work of 1893; D. J. Korteweg, Arch. Néerl. Sci. Exactes Fluctuations(Wiley, New York, 197).
Nat. Ser. 11 6, 1 (19037). [20] A. A. Wheeler, W. J. Boettinger, and G. B. McFadden, Phys.
[5] H. E. Stanley,Introduction to Phase Transitions and Critical Rev. E 47, 1893(1993; S. L. Wang and R. F. Sekerkinid.
PhenomenaOxford University Press, Oxford, 19¥%1J. S. 53, 3760(1996; W. J. Boettinger and J. A. Warren, J. Cryst.
Rowlinson and B. WidomMolecular Theory of Capillarity Growth 200, 583(1999.
(Clarendon, Oxford, 1989 [21] P. Galenko and S. Sobolev, Phys. Rev5E, 343 (1997); P.

[6] L. D. Landau and I. M. Khalatnikov, Dokl. Akad. Nauk SSSR Galenko, Phys. Rev. B55, 144103(2002.
96, 469 (1954); Collected Papers of L. D. Landaedited by  [22] D. Jou, J. Casas-Vazquez, and G. Lebon, Rep. Prog. Piys.

D. ter Haar(Pergamon Press, Oxford, 1969. 626. 1005(1988.
[7] L. D. Landau, JETP7, 19 (1937; Collected Papers of L. D. [23] P. Galenko, Phys. Lett. 287, 190 (2002J.
Landau[6], p. 193. [24] D. Jou, J. Casas-Vazquez, and G. Ledoxtended Irreversible
[8] V. L. Ginzburg and L. D. Landau, JETRO, 1064 (1950; Thermodynamics2nd ed.(Springer, Berlin, 1996
Collected Papers of L. D. Landd®], p. 546. [25] D. Joseph and L. Preziosi, Rev. Mod. Ph#4, 41(1989; 62,
[9] B. I. Halperin, P. C. Hohenberg, and S.-K. Ma, Phys. Rev. B 375(1990.
10, 139(1974. [26] 1. Muller and T. Ruggeri, Extended Thermodynamics
[10] S. E. Allen and J. W. Cahn, Acta Metal27, 1085(1979. (Springer, New York, 1993
[11] G. J. Fix, inFree Boundary Problems: Theory and Applica- [27] D. Jou, J. Casas-Vazquez, and G. Lebon, Rep. Prog. Bys.
tions edited by A. Fasano and M. PrimiceriBitman, Boston, 1035(1999.
1983, p. 580; J. B. Collins and H. Levine, Phys. Rev. 3, [28] D. Jou, J. Casas-Vazquez, and G. Lebon, J. Non-Equil. Ther-
6119(1985; J. S. Langer, irDirections in Condensed Matter modyn. 23, 277 (1998.
Physics edited by G. Grinstein and G. Mazenk@/orld Sci- [29] R. Luzzi, A. R. Vasconcellos, J. Casas-Vazquez, and D. Jou,
entific, Philadelphia, 1986p. 165. Physica A248 111(1998.
[12] L. Q. Chen, Annu. Rev. Mater. Res82, 113 (2002; W. J. [30] D. Jou, J. Casas-Vazquez, and M. Criado-Sandhermody-
Boettinger, J. A. Warren, C. Beckermann, and A. Karibal. namics of Fluids Under FlowSpringer, Berlin, 2000

046125-12



DIFFUSE-INTERFACE MODEL FOR RAPID PHASE PHYSICAL REVIEW E 71, 046125(2005

[31] P. K. Galenko and D. A. Danilov, Phys. Lett. 278 129  [50] P. Resibois and M. de LeeneGlassical Kinetic Theory of

(2000. _ Fluids (Wiley, New York, 1977; J. P. Hansen and I. R. Mc-
[32] P. K. Galenko and D. A. Danilov, J. Cryst. Grow@i.6 512 Donald, Theory of Simple Liquid{Academic, New York,
(2000; Phys. Rev. E69, 051608(2004. 1986.

[33] R. Peierls, Quantum Theory of Solid$Oxford University [51] D. N. Zubarev, V. Morozov, and G. Répk&tatistical Me-

Press, London, 1955 : S i
’ . ) chanics of Nonequilibrium Processéskademie Verlag, Ber-
[34] P. Galenko, Kristallografiya38(6), 238 (1993 [Crystallogr. lin, 1977, (2 volumes; R. Luzzi, A. R. Vasconcellos, and J. G.

Rep. 38, 836(1993]; Phys. Lett.190, 292(1994. . A .
[35] M. Barth, F. Joo, B. Wei, and D. M. Herlach, J. Non-Cryst. Ramos,Foundation of a Nonequilibrium Ensemble Formalism
(Kluwer, Dordrecht, 2002

Solids 156158 398 (1993. .
[36] J. J. Hoyt, B. Sadigh, M. Asta, and S. M. Foiles, Acta Mater. [52] F. Vazquez and J. A. del Rio, Phys. Rev.4%, 178(1993.

47, 3181(1999. [53] R. Temam,Inifinite-Dimensional Dynamical Systems in Me-

[37] A. Karma and W.-J. Rappel, Phys. Rev.57, 4323(1998. chanics and Physi¢c2nd ed.(Springer, New York, 1997

[38] J. Bragard, A. Karma, Y. H. Lee, and M. Plapp, Interface Sci.[54] J. W. Cahn and J. E. Hillard, J. Chem. Phy8, 258 (1958
10(2-3), 121 (2002. [55] J. W. Cahn, Acta Metall8, 554 (1960.

[39] A. Karma, Phys. Rev. Lett87, 115701(2002). [56] J. Jackle, and H. L. Frish, J. Polym. Sci., Polym. Phys. E3].

[40] J. C. Ramirez, C. Beckermann, A. Karma, and H.-J. Diepers, 675 (1989; K. Binder, H. L. Frish, and J. Jéckle, J. Chem.
Phys. Rev. E69, 051607(2004). Phys. 85, 1505(1986.

[41] P. K. Galenko and D. A. Danilov, Phys. Lett. 35 271  [57] S. Bastea and J. L. Lebowitz, Phys. Rev5E 3821(1995.
(1997; J. Cryst. Growth197, 992 (1999. [58] W. E. Olmstead, S. H. Davis, S. Rosenblat, and W. I. Kath,

[42] R. Willnecker, D. M. Herlach, and B. Feuerbacher, Appl. Phys. SIAM J. Appl. Math. 46, 171(1986; B. R. Duffy, P. Freitas,
Lett. 56, 324(1990. and M. Grinfeld, SIAM J. Appl. Math.33, 1090(2002.

[43] R. E. Nettleton, Phys. Fluid8, 216 (1960. [59] J. Fort and V. Mendez, Rep. Prog. Phys, 895 (2002.

[44] Evaluated from Eq(2) for 71 in which the thermal diffusivity ~ [60] J. Fort and V. Mendez, Phys. Rev. Le&82, 867 (1999.
a=1.2x10"° (m?/s) and the thermal speedr=10° (m/s) are [61] H. G. Rotstein, S. Brandon, A. Novick-Cohen, and A. Nepom-

accepted from Ref.31]. nyashchy, SIAM J. Appl. Math62, 264 (2001).
[45] Evaluated from Eq(3) with the material parameters given in [62] A. F. Andreev and A. Y. Parshin, Sov. Phys. JE®B, 763
Sec. I B. (1978.
[46] Evaluated from Eq(2) for 75 in which the diffusion constant [63] A. Y. Keshishev, A. Y. Parshin, and A. V. Babkin, Sov. Phys.
D=5.5x10"° (m?/s) and the solute diffusion speedp JETP 30, 56 (1990.
=18.9(m/s) are accepted from Reff41]. [64] A. Novick-Cohen, inFree Boundary Problem#roceedings of
[47] Evaluated from Eq(2) for rp in which the diffusion constant the Research Institute for Mathematical Sciences. Kyoto Uni-
D=3%x10°(m?/s) and the solute diffusion speed/p versity Meeting No. 121QRIMS, Kyoto, Japan, 200(. 129;
=20(m/9) are accepted from Ref41]. M. Grasselli and H. G. Rotstein, J. Math. Anal. Apgi61, 205
[48] Evaluated from Eq(4) with the material parameters given in (200D; M. Grasselli and V. Pata, J. Evol. Eqd, 27 (2004.
Sec. Il B. [65] I. V. Tokatly and O. Pankratov, Phys. Rev. @&, 2759(2000.
[49] C. Truesdell and W. Noll, irHandbuch der Physik ljledited  [66] G. E. Morfill, S. A. Khrapak, A. V. Ivlev, B. A. Klumov, M.
by S. Flugge(Springer, Berlin, 196D Rubin-Zuzic, and H. M. Thomas, Phys. S@r107, 59 (2004).

046125-13



