2,845 research outputs found
Structural and nuclear characterizations of defects created by noble gas implantation in silicon oxide
Thermally grown silicon oxide layer was implanted at room temperature with 300keV Xe at fluences ranging from 0.5 to 5x10Xe/cm. Bubbles created after Xe-implantation provided a low-k silicon oxide that has potential use as a dielectric material for interconnects in Si integrated circuits. Transmission Electron Microscopy (TEM), Rutherford Backscattering Spectrometry (RBS) and Positron Annihilation Spectroscopy (PAS) were used to provide a comprehensive characterization of defects (bubbles, vacancy, gas atoms and other types of defects) created by Xe implantation in layer. These measurements suggest that the bubbles observed with TEM for all fluences were a consequence of the interaction between Xe and vacancies (V), with complexes created in the zone where V and Xe profiles overlap. Negatively charged defects such as (, and ) are also created after implantation
Study of the optimal conditions for NV- center formation in type 1b diamond, using photoluminescence and positron annihilation spectroscopies
We studied the parameters to optimize the production of negatively-charged
nitrogen-vacancy color centers (NV-) in type~1b single crystal diamond using
proton irradiation followed by thermal annealing under vacuum. Several samples
were treated under different irradiation and annealing conditions and
characterized by slow positron beam Doppler-broadening and photoluminescence
(PL) spectroscopies. At high proton fluences another complex vacancy defect
appears limiting the formation of NV-. Concentrations as high as 2.3 x 10^18
cm^-3 of NV- have been estimated from PL measurements. Furthermore, we inferred
the trapping coefficient of positrons by NV-. This study brings insight into
the production of a high concentration of NV- in diamond, which is of utmost
importance in ultra-sensitive magnetometry and quantum hybrid systems
applications
The effects of star formation on the low-metallicity ISM: NGC4214 mapped with Herschel/PACS spectroscopy
We present Herschel/PACS spectroscopic maps of the dwarf galaxy NC4214
observed in 6 far infrared fine-structure lines: [C II] 158mu, [O III] 88mu, [O
I] 63mu, [O I] 146mu, [N II] 122mu, and [N II] 205mu. The maps are sampled to
the full telescope spatial resolution and reveal unprecedented detail on ~ 150
pc size scales. We detect [C II] emission over the whole mapped area, [O III]
being the most luminous FIR line. The ratio of [O III]/[C II] peaks at about 2
toward the sites of massive star formation, higher than ratios seen in dusty
starburst galaxies. The [C II]/CO ratios are 20 000 to 70 000 toward the 2
massive clusters, which are at least an order of magnitude larger than spiral
or dusty starbursts, and cannot be reconciled with single-slab PDR models.
Toward the 2 massive star-forming regions, we find that L[CII] is 0.5 to 0.8%
of the LTIR . All of the lines together contribute up to 2% of LTIR . These
extreme findings are a consequence of the lower metallicity and young,
massive-star formation commonly found in dwarf galaxies. These conditions
promote large-scale photodissociation into the molecular reservoir, which is
evident in the FIR line ratios. This illustrates the necessity to move to
multiphase models applicable to star-forming clusters or galaxies as a whole.Comment: Accepted for publication in the A&A Herschel Special Issu
A Compendium of Far-Infrared Line and Continuum Emission for 227 Galaxies Observed by the Infrared Space Observatory
Far-infrared line and continuum fluxes are presented for a sample of 227
galaxies observed with the Long Wavelength Spectrometer on the Infrared Space
Observatory. The galaxy sample includes normal star-forming systems,
starbursts, and active galactic nuclei covering a wide range of colors and
morphologies. The dataset spans some 1300 line fluxes, 600 line upper limits,
and 800 continuum fluxes. Several fine structure emission lines are detected
that arise in either photodissociation or HII regions: [OIII]52um, [NIII]57um,
[OI]63um, [OIII]88um, [NII]122um, [OI]145um, and [CII]158um. Molecular lines
such as OH at 53um, 79um, 84um, 119um, and 163um, and H2O at 58um, 66um, 75um,
101um, and 108um are also detected in some galaxies. In addition to those lines
emitted by the target galaxies, serendipitous detections of Milky Way
[CII]158um and an unidentified line near 74um in NGC1068 are also reported.
Finally, continuum fluxes at 52um, 57um, 63um, 88um, 122um, 145um, 158um, and
170um are derived for a subset of galaxies in which the far-infrared emission
is contained within the ~75" ISO LWS beam. The statistics of this large
database of continuum and line fluxes, including trends in line ratios with the
far-infrared color and infrared-to-optical ratio, are explored.Comment: Accepted for publication in the Astrophysical Journal Supplement
Serie
The Spectrum of Integrated Millimeter Flux of the Magellanic Clouds and 30-Doradus from TopHat and DIRBE Data
We present measurements of the integrated flux relative to the local
background of the Large and Small Magellanic Clouds and the region 30-Doradus
(the Tarantula Nebula) in the LMC in four frequency bands centered at 245, 400,
460, and 630 GHz, based on observations made with the TopHat telescope. We
combine these observations with the corresponding measurements for the DIRBE
bands 8, 9, and 10 to cover the frequency range 245 - 3000 GHz (100 - 1220
micrometers) for these objects. We present spectra for all three objects and
fit these spectra to a single-component greybody emission model and report
best-fit dust temperatures, optical depths, and emissivity power-law indices,
and we compare these results with other measurements in these regions and
elsewhere. Using published dust grain opacities, we estimate the mass of the
measured dust component in the three regions.Comment: 41 pages, 4 figures. Accepted for publication in Astrophysical
Journa
Recommended from our members
Mapping far-IR emission from the central kiloparsec of NGCâ1097
Using photometry of NGC 1097 from the Herschel PACS (Photodetector Array Camera and Spectrometer) instrument, we study the resolved properties of thermal dust continuum emission from a circumnuclear starburst ring with a radius ~900 pc. These observations are the first to resolve the structure of a circumnuclear ring at wavelengths that probe the peak (i.e. λ ~ 100 ÎŒm) of the dust spectral energy distribution. The ring dominates the far-infrared (far-IR) emission from the galaxy â the high angular resolution of PACS allows us to isolate the ring\u27s contribution and we find it is responsible for 75, 60 and 55% of the total flux of NGC 1097 at 70, 100 and 160 ÎŒm, respectively. We compare the far-IR structure of the ring to what is seen at other wavelengths and identify a sequence of far-IR bright knots that correspond to those seen in radio and mid-IR images. The mid- and far-IR band ratios in the ring vary by less than ±20% azimuthally, indicating modest variation in the radiation field heating the dust on ~600 pc scales. We explore various explanations for the azimuthal uniformity in the far-IR colors of the ring including a lack of well-defined age gradients in the young stellar cluster population, a dominant contribution to the far-IR emission from dust heated by older (\u3e10 Myr) stars and/or a quick smoothing of local enhancements in dust temperature due to the short orbital period of the ring. Finally, we improve previous limits on the far-IR flux from the inner ~600 pc of NGC 1097 by an order of magnitude, providing a better estimate of the total bolometric emission arising from the active galactic nucleus and its associated central starburst
Theoretical interpretation of the experimental electronic structure of lens shaped, self-assembled InAs/GaAs quantum dots
We adopt an atomistic pseudopotential description of the electronic structure
of self-assembled, lens shaped InAs quantum dots within the ``linear
combination of bulk bands'' method. We present a detailed comparison with
experiment, including quantites such as the single particle electron and hole
energy level spacings, the excitonic band gap, the electron-electron, hole-hole
and electron hole Coulomb energies and the optical polarization anisotropy. We
find a generally good agreement, which is improved even further for a dot
composition where some Ga has diffused into the dots.Comment: 16 pages, 5 figures. Submitted to Physical Review
Influence of severe plastic deformation on the precipitation hardening of a FeSiTi steel
The combined strengthening effects of grain refinement and high precipitated
volume fraction (~6at.%) on the mechanical properties of FeSiTi alloy subjected
to SPD processing prior to aging treatment were investigated by atom probe
tomography and scanning transmission electron microscopy. It was shown that the
refinement of the microstructure affects the precipitation kinetics and the
spatial distribution of the secondary hardening intermetallic phase, which was
observed to nucleate heterogeneously on dislocations and sub-grain boundaries.
It was revealed that alloys successively subjected to these two strengthening
mechanisms exhibit a lower increase in mechanical strength than a simple
estimation based on the summation of the two individual strengthening
mechanisms
Equilibrium shapes of flat knots
We study the equilibrium shapes of prime and composite knots confined to two
dimensions. Using rigorous scaling arguments we show that, due to self-avoiding
effects, the topological details of prime knots are localised on a small
portion of the larger ring polymer. Within this region, the original knot
configuration can assume a hierarchy of contracted shapes, the dominating one
given by just one small loop. This hierarchy is investigated in detail for the
flat trefoil knot, and corroborated by Monte Carlo simulations.Comment: 4 pages, 3 figure
Cold Dust but Warm Gas in the Unusual Elliptical Galaxy NGC 4125
Data from the Herschel Space Observatory have revealed an unusual elliptical galaxy, NGC 4125, which has strong and extended submillimeter emission from cold dust but only very strict upper limits to its CO and Hi emission. Depending on the dust emissivity, the total dust mass is 2-5 x 10(6) M-circle dot. While the neutral gas-to-dust mass ratio is extremely low (= 10(4) K faster than the dust is evaporated. If galaxies like NGC 4125, where the far-infrared emission does not trace neutral gas in the usual manner, are common at higher redshift, this could have significant implications for our understanding of high redshift galaxies and galaxy evolution.Canadian Space AgencyNatural Sciences and Engineering Research Council of CanadaAgenzia Spaziale Italiana (ASI) I/005/11/0BMVIT (Austria)ESA-PRODEX (Belgium)CEA/CNES (France)DLR (Germany)ASI/INAF (Italy)CICYT/MCYT (Spain)CSA (Canada)NAOC (China)CEA, (France)CNES (France)CNRS (France)ASI (Italy)MCINN (Spain)SNSB (Sweden)STFC (UK)NASA (USA)National Aeronautics and Space AdministrationAstronom
- âŠ