416 research outputs found

    Turbulence regimes in planetary cores

    Get PDF

    Anisotropy and shear-velocity heterogeneities in the upper mantle

    Get PDF
    Long-period surface waves are used to map lateral heterogeneities of velocity and anisotropy in the upper mantle. The dispersion curves are expanded in spherical harmonics up to degree 6 and inverted to find the depth structure. The data are corrected for the effect of surface layers and both Love and Rayleigh waves are used. Shear wave velocity and shear polarization anisotropy can be resolved down to a depth of about 450 km. The shear wave velocity distribution to 200 km depth correlates with surface tectonics, except in a few anomalous regions. Below that depth the correlation vanishes. Cold subducted material shows up weakly at 350 km as fast S-wave anomalies. In the transition region a large scale pattern appears with fast mantle in the South-Atlantic. S-anisotropy at 200 km can resolve uprising or downwelling currents under some ridges and subduction zones. The Pacific shows a NW-SE fabric

    Reassessment of a reported S-delay under Trindade

    Get PDF
    We present a correction to a paper by Okal and Anderson (1975) about multiple ScS travel-time anomalies. We have reanalyzed data for ScS_2 surface bounces in the South Atlantic Ocean. From these data an ScS_2-S residual of 23.6 seconds was found by Okal and Anderson (1975). This corresponded to an ScS_2 surface bounce point under Trindade island and was inferred to be due to very slow upper mantle associated with the Trindade hot spot. The analysis we present here invalidates this conclusion. The nature of the upper mantle under Trindade is an open issue

    Strong-field dynamo action in rapidly rotating convection with no inertia

    Get PDF
    The earth's magnetic field is generated by dynamo action driven by convection in the outer core. For numerical reasons, inertial and viscous forces play an important role in geodynamo models; however, the primary dynamical balance in the earth's core is believed to be between buoyancy, Coriolis, and magnetic forces. The hope has been that by setting the Ekman number to be as small as computationally feasible, an asymptotic regime would be reached in which the correct force balance is achieved. However, recent analyses of geodynamo models suggest that the desired balance has still not yet been attained. Here we adopt a complementary approach consisting of a model of rapidly rotating convection in which inertial forces are neglected from the outset. Within this framework we are able to construct a branch of solutions in which the dynamo generates a strong magnetic field that satisfies the expected force balance. The resulting strongly magnetized convection is dramatically different from the corresponding solutions in which the field is weak

    Direct observation of polar tweed in LaAlO3

    Get PDF
    Polar tweed was discovered in mechanically stressed LaAlO3. Local patches of strained material (diameter ca. 5 μm) form interwoven patterns seen in birefringence images, Piezo-Force Microscopy (PFM) and Resonant Piezoelectric Spectroscopy (RPS). PFM and RPS observations prove unequivocally that electrical polarity exists inside the tweed patterns of LaAlO3. The local piezoelectric effect varies greatly within the tweed patterns and reaches magnitudes similar to quartz. The patterns were mapped by the shift of the Eg soft-mode frequency by Raman spectroscopy

    Experimental study of super-rotation in a magnetostrophic spherical Couette flow

    Get PDF
    We report measurements of electric potentials at the surface of a spherical container of liquid sodium in which a magnetized inner core is differentially rotating. The azimuthal angular velocities inferred from these potentials reveal a strong super-rotation of the liquid sodium in the equatorial region, for small differential rotation. Super-rotation was observed in numerical simulations by Dormy et al. [1]. We find that the latitudinal variation of the electric potentials in our experiments differs markedly from the predictions of a similar numerical model, suggesting that some of the assumptions used in the model - steadiness, equatorial symmetry, and linear treatment for the evolution of both the magnetic and velocity fields - are violated in the experiments. In addition, radial velocity measurements, using ultrasonic Doppler velocimetry, provide evidence of oscillatory motion near the outer sphere at low latitude: it is viewed as the signature of an instability of the super-rotating region

    Zonal shear and super-rotation in a magnetized spherical Couette flow experiment

    Get PDF
    We present measurements performed in a spherical shell filled with liquid sodium, where a 74 mm-radius inner sphere is rotated while a 210 mm-radius outer sphere is at rest. The inner sphere holds a dipolar magnetic field and acts as a magnetic propeller when rotated. In this experimental set-up called DTS, direct measurements of the velocity are performed by ultrasonic Doppler velocimetry. Differences in electric potential and the induced magnetic field are also measured to characterize the magnetohydrodynamic flow. Rotation frequencies of the inner sphere are varied between -30 Hz and +30 Hz, the magnetic Reynolds number based on measured sodium velocities and on the shell radius reaching to about 33. We have investigated the mean axisymmetric part of the flow, which consists of differential rotation. Strong super-rotation of the fluid with respect to the rotating inner sphere is directly measured. It is found that the organization of the mean flow does not change much throughout the entire range of parameters covered by our experiment. The direct measurements of zonal velocity give a nice illustration of Ferraro's law of isorotation in the vicinity of the inner sphere where magnetic forces dominate inertial ones. The transition from a Ferraro regime in the interior to a geostrophic regime, where inertial forces predominate, in the outer regions has been well documented. It takes place where the local Elsasser number is about 1. A quantitative agreement with non-linear numerical simulations is obtained when keeping the same Elsasser number. The experiments also reveal a region that violates Ferraro's law just above the inner sphere.Comment: Phys Rev E, in pres

    OGLE-2017-BLG-0329L: A Microlensing Binary Characterized with Dramatically Enhanced Precision Using Data from Space-based Observations

    Get PDF
    Mass measurements of gravitational microlenses require one to determine the microlens parallax π E, but precise π E measurement, in many cases, is hampered due to the subtlety of the microlens-parallax signal combined with the difficulty of distinguishing the signal from those induced by other higher-order effects. In this work, we present the analysis of the binary-lens event OGLE-2017-BLG-0329, for which π E is measured with a dramatically improved precision using additional data from space-based Spitzer observations. We find that while the parallax model based on the ground-based data cannot be distinguished from a zero-π E model at the 2σ level, the addition of the Spitzer data enables us to identify two classes of solutions, each composed of a pair of solutions according to the well-known ecliptic degeneracy. It is found that the space-based data reduce the measurement uncertainties of the north and east components of the microlens-parallax vector π E by factors ~18 and ~4, respectively. With the measured microlens parallax combined with the angular Einstein radius measured from the resolved caustic crossings, we find that the lens is composed of a binary with component masses of either (M1, M2) ~ (1.1, 0.8) M⊙ or ~(0.4, 0.3) M⊙ according to the two solution classes. The first solution is significantly favored but the second cannot be securely ruled out based on the microlensing data alone. However, the degeneracy can be resolved from adaptive optics observations taken ~10 years after the event
    • …
    corecore