390 research outputs found

    Molecular structure of nitrogen trichloride as determined by electron diffraction

    Full text link
    Nitrogen trichloride was found to have a bond length of rg = 1.759 +/- 0.002 A and a Cl-N-Cl angle of 107.1 +/- 0.5[deg]. The bond angle is larger than that found in NF3, consistent with the (recently revised) trends displayed by the trihalides of phosphorus and arsenic, but much lower than the 120[deg] angle reported for the isoelectronic molecule N(SiH3)3. Moreover, a comparison between selected compounds reveals that the N-Cl bond length is appreciably greater, relatively, than the N-Si bond length. Accordingly, the bond angles and bond lengths suggest a greater reluctance of the nitrogen lone pairs to delocalize onto Cl than onto SiH3 groups. Mean amplitudes of vibration of NCl3 were derived both from the diffraction data and from recently published infrared and Raman frequencies. The values agree within the estimated uncertainties.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/33551/1/0000052.pd

    Consensus guideline for the diagnosis and treatment of tetrahydrobiopterin (BH4) deficiencies

    Get PDF
    Background: Tetrahydrobiopterin (BH4) deficiencies comprise a group of six rare neurometabolic disorders characterized by insufficient synthesis of the monoamine neurotransmitters dopamine and serotonin due to a disturbance of BH4 biosynthesis or recycling. Hyperphenylalaninemia (HPA) is the first diagnostic hallmark for most BH4 deficiencies, apart from autosomal dominant guanosine triphosphate cyclohydrolase I deficiency and sepiapterin reductase deficiency. Early supplementation of neurotransmitter precursors and where appropriate, treatment of HPA results in significant improvement of motor and cognitive function. Management approaches differ across the world and therefore these guidelines have been developed aiming to harmonize and optimize patient care. Representatives of the International Working Group on Neurotransmitter related Disorders (iNTD) developed the guidelines according to the SIGN (Scottish Intercollegiate Guidelines Network) methodology by evaluating all available evidence for the diagnosis and treatment of BH4 deficiencies. Conclusion: Although the total body of evidence in the literature was mainly rated as low or very low, these consensus guidelines will help to harmonize clinical practice and to standardize and improve care for BH4 deficient patients

    Exploring subtle land use and land cover changes: a framework for future landscape studies

    Get PDF
    UMR AMAP, Ă©quipe 3International audienceLand cover and land use changes can have a wide variety of ecological effects, including significant impacts on soils and water quality. In rural areas, even subtle changes in farming practices can affect landscape features and functions, and consequently the environment. Fine-scale analyses have to be performed to better understand the land cover change processes. At the same time, models of land cover change have to be developed in order to anticipate where changes are more likely to occur next. Such predictive information is essential to propose and implement sustainable and efficient environmental policies. Future landscape studies can provide a framework to forecast how land use and land cover changes is likely to react differently to subtle changes. This paper proposes a four step framework to forecast landscape futures at fine scales by coupling scenarios and landscape modelling approaches. This methodology has been tested on two contrasting agricultural landscapes located in the United States and France, to identify possible landscape changes based on forecasting and backcasting agriculture intensification scenarios. Both examples demonstrate that relatively subtle land cover and land use changes can have a large impact on future landscapes. Results highlight how such subtle changes have to be considered in term of quantity, location, and frequency of land use and land cover to appropriately assess environmental impacts on water pollution (France) and soil erosion (US). The results highlight opportunities for improvements in landscape modelling

    Activation of BMP-Smad1/5/8 Signaling Promotes Survival of Retinal Ganglion Cells after Damage In Vivo

    Get PDF
    While the essential role of bone morphogenetic protein (BMP) signaling in nervous system development is well established, its function in the adult CNS is poorly understood. We investigated the role of BMP signaling in the adult mouse retina following damage in vivo. Intravitreal injection of N-Methyl-D-aspartic acid (NMDA) induced extensive retinal ganglion cell death by 2 days. During this period, BMP2, -4 and -7 were upregulated, leading to phosphorylation of the downstream effector, Smad1/5/8 in the inner retina, including in retinal ganglion cells. Expression of Inhibitor of differentiation 1 (Id1; a known BMP-Smad1/5/8 target) was also upregulated in the retina. This activation of BMP-Smad1/5/8 signaling was also observed following light damage, suggesting that it is a general response to retinal injuries. Co-injection of BMP inhibitors with NMDA effectively blocked the damage-induced BMP-Smad1/5/8 activation and led to further cell death of retinal ganglion cells, when compared with NMDA injection alone. Moreover, treatment of the retina with exogenous BMP4 along with NMDA damage led to a significant rescue of retinal ganglion cells. These data demonstrate that BMP-Smad1/5/8 signaling is neuroprotective for retinal ganglion cells after damage, and suggest that stimulation of this pathway can serve as a potential target for neuroprotective therapies in retinal ganglion cell diseases, such as glaucoma

    Studies in molecular structure, symmetry and conformation I

    Full text link
    Crystals of 1-aminocyclooctanecarboxylic acid hydrobromide are orthorhombic, with a = 26·026, b =7·087, c = 6·149, Z = 4 and space group P 2 1 2 1 2 1 .The structure was solved in projections by direct methods and later refined with three-dimensional data using a full-matrix least-squares treatment. All hydrogen atoms were located from a difference Fourier and the final R factor for the 1128 observed reflections was 8·62 %. The molecules are held together by a series of hydrogen bonds in a three-dimensional network. A detailed discussion of the intramolecular and the intermolecular features of the structure is presented. The cyclooctane ring is found to exist in the boat-chair conformation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44829/1/10870_2005_Article_BF01198532.pd

    Time-resolved single-crystal X-ray crystallography

    Get PDF
    In this chapter the development of time-resolved crystallography is traced from its beginnings more than 30 years ago. The importance of being able to “watch” chemical processes as they occur rather than just being limited to three-dimensional pictures of the reactant and final product is emphasised, and time-resolved crystallography provides the opportunity to bring the dimension of time into the crystallographic experiment. The technique has evolved in time with developments in technology: synchrotron radiation, cryoscopic techniques, tuneable lasers, increased computing power and vastly improved X-ray detectors. The shorter the lifetime of the species being studied, the more complex is the experiment. The chapter focusses on the results of solid-state reactions that are activated by light, since this process does not require the addition of a reagent to the crystalline material and the single-crystalline nature of the solid may be preserved. Because of this photoactivation, time-resolved crystallography is often described as “photocrystallography”. The initial photocrystallographic studies were carried out on molecular complexes that either underwent irreversible photoactivated processes where the conversion took hours or days. Structural snapshots were taken during the process. Materials that achieved a metastable state under photoactivation and the excited (metastable) state had a long enough lifetime for the data from the crystal to be collected and the structure solved. For systems with shorter lifetimes, the first time-resolved results were obtained for macromolecular structures, where pulsed lasers were used to pump up the short lifetime excited state species and their structures were probed by using synchronised X-ray pulses from a high-intensity source. Developments in molecular crystallography soon followed, initially with monochromatic X-ray radiation, and pump-probe techniques were used to establish the structures of photoactivated molecules with lifetimes in the micro- to millisecond range. For molecules with even shorter lifetimes in the sub-microsecond range, Laue diffraction methods (rather than using monochromatic radiation) were employed to speed up the data collections and reduce crystal damage. Future developments in time-resolved crystallography are likely to involve the use of XFELs to complete “single-shot” time-resolved diffraction studies that are already proving successful in the macromolecular crystallographic field.</p

    Chlorophyll a/b binding (CAB) polypeptides of CP29, the internal chlorophyll a/b complex of PSII: characterization of the tomato gene encoding the 26 kDa (type 1) polypeptide, and evidence for a second CP29 polypeptide

    Full text link
    CP29, the core chlorophyll a/b (CAB) antenna complex of Photosystem II (PSII), has two nuclearencoded polypeptides of approximately 26 and 28 kDa in tomato ( Lycopersicon esculentum ). Cab9, the gene for the Type 1 (26 kDa) CP29 polypeptide was cloned by immunoscreening a tomato leaf cDNA library. Its identity was confirmed by sequencing tryptic peptides from the mature protein. Cab9 is a single-copy gene with five introns, the highest number found in a CAB protein. In vitro transcription-translation gave a 31 kDa precursor which was cleaved to about 26 kDa after import into isolated tomato chloroplasts. The Cab9 polypeptide has the two highly conserved regions common to all CAB polypeptides, which define the members of this extended gene family. Outside of the conserved regions, it is only slightly more closely related to other PSII CABs than to PSI CABs. Sequence analysis of tryptic peptides from the Type II (28 kDa) CP29 polypeptide showed that it is also a member of the CAB family and is very similar or identical to the CP29 polypeptide previously isolated from spinach. All members of the CAB family have absolutely conserved His, Gln and Asn residues which could ligate the Mg atoms of the chlorophylls, and a number of conserved Asp, Glu, Lys and Arg residues which could form H-bonds to the polar groups on the porphyrin rings. The two conserved regions comprise the first and third predicted trans-membrane helices and the stroma-exposed segments preceding them.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47577/1/438_2004_Article_BF00259681.pd

    The Swiss Preschoolers’ health study (SPLASHY): objectives and design of a prospective multi-site cohort study assessing psychological and physiological health in young children

    Full text link
    • …
    corecore