334 research outputs found

    Co-creating corporate brand identity with online brand communities: a managerial perspective

    Get PDF
    Contemporary branding literature views brand identity as socially constructed through complex interactions between multiple stakeholders. Despite extant work on how brand communities and individuals contribute towards brand identity formation, our understanding of management-led processes constituting part of the wider process of a socially constructed brand identity is still under-developed. Drawing on in-depth interviews with senior executives of a luxury automotive company and a netnography of its online brand community, we develop a process model of corporate brand identity co-creation, comprising three management-led processes: ‘nurturing brand passion’, ‘bridging’ corporate brand identity meanings and ‘partnering’, and associated activities through which management contribute to the wider process of corporate brand identity formation with community members and other stakeholders. By highlighting the interlinked and recursive nature of these processes and activities in the resulting model, the study offers a deeper understanding of the ways in which management are involved in co-creating corporate brand identity

    Sub-Micrometer-Scale Mapping of Magnetite Crystals and Sulfur Globules in Magnetotactic Bacteria Using Confocal Raman Micro-Spectrometry

    Get PDF
    The ferrimagnetic mineral magnetite Fe3O4 is biomineralized by magnetotactic microorganisms and a diverse range of animals. Here we demonstrate that confocal Raman microscopy can be used to visualize chains of magnetite crystals in magnetotactic bacteria, even though magnetite is a poor Raman scatterer and in bacteria occurs in typical grain sizes of only 35-120 nm, well below the diffraction-limited optical resolution. When using long integration times together with low laser power (<0.25 mW) to prevent laser induced damage of magnetite, we can identify and map magnetite by its characteristic Raman spectrum (303, 535, 665 cm(-1)) against a large autofluorescence background in our natural magnetotactic bacteria samples. While greigite (cubic Fe3S4; Raman lines of 253 and 351 cm(-1)) is often found in the Deltaproteobacteria class, it is not present in our samples. In intracellular sulfur globules of Candidatus Magnetobacterium bavaricum (Nitrospirae), we identified the sole presence of cyclo-octasulfur (S-8: 151, 219, 467 cm(-1)), using green (532 nm), red (638 nm) and near-infrared excitation (785 nm). The Raman-spectra of phosphorous-rich intracellular accumulations point to orthophosphate in magnetic vibrios and to polyphosphate in magnetic cocci. Under green excitation, the cell envelopes are dominated by the resonant Raman lines of the heme cofactor of the b or c-type cytochrome, which can be used as a strong marker for label-free live-cell imaging of bacterial cytoplasmic membranes, as well as an indicator for the redox state

    Metallic artefact reduction with monoenergetic dual-energy CT: systematic ex vivo evaluation of posterior spinal fusion implants from various vendors and different spine levels

    Get PDF
    Objectives: To evaluate optimal monoenergetic dual-energy computed tomography (DECT) settings for artefact reduction of posterior spinal fusion implants of various vendors and spine levels. Methods: Posterior spinal fusion implants of five vendors for cervical, thoracic and lumbar spine were examined ex vivo with single-energy (SE) CT (120 kVp) and DECT (140/100 kVp). Extrapolated monoenergetic DECT images at 64, 69, 88, 105keV and individually adjusted monoenergy for optimised image quality (OPTkeV) were generated. Two independent radiologists assessed quantitative and qualitative image parameters for each device and spine level. Results: Inter-reader agreements of quantitative and qualitative parameters were high (ICC = 0.81-1.00, κ = 0.54-0.77). HU values of spinal fusion implants were significantly different among vendors (P < 0.001), spine levels (P < 0.01) and among SECT, monoenergetic DECT of 64, 69, 88, 105keV and OPTkeV (P < 0.01). Image quality was significantly (P < 0.001) different between datasets and improved with higher monoenergies of DECT compared with SECT (V = 0.58, P < 0.001). Artefacts decreased significantly (V = 0.51, P < 0.001) at higher monoenergies. OPTkeV values ranged from 123-141keV. OPTkeV according to vendor and spine level are presented herein. Conclusions: Monoenergetic DECT provides significantly better image quality and less metallic artefacts from implants than SECT. Use of individual keV values for vendor and spine level is recommended. Key Points: • Artefacts pose problems for CT following posterior spinal fusion implants. • CT images are interpreted better with monoenergetic extrapolation using dual-energy (DE) CT. • DECT extrapolation improves image quality and reduces metallic artefacts over SECT. • There were considerable differences in monoenergy values among vendors and spine levels. • Use of individualised monoenergy values is indicated for different metallic hardware device

    Вплив нормального тиску на напружений стан гуми ступінчастого каната на робочому органі підйомної машини

    Get PDF
    Досліджено напружений стан гуми ступінчастого гумотросового каната у разі його застосування на підйомній машині з бобінним робочим органом та зі шківом тертя. Показано, що максимальні напруження в гумі залежать від конструкції каната та тиску, що виникає поміж шарами. Форма поперечного перерізу троса також впливає на напружений стан гуми.Исследовано напряженное состояние резины ступенчатого резинотросового каната в случае его применения на подъемной машине с бобинным рабочим органом и со шкивом трения. Показано, что максимальные напряжения в резине зависят от конструкции каната и давления, возникающего между слоями. Форма поперечного сечения троса также влияет на напряженное состояние резины.The stress-strain state of stepped rubber-rope cable in bobbin of winding and in pulley friction, are investigated. Shown that the maximum stress in the rubber depends on the design of the rope and the pressure appeared between the layers. Cable cross-sectional shape also affects to the stressstrain state of rubber

    The Effect of Paraspinal Fatty Muscle Infiltration and Cumulative Lumbar Spine Degeneration on the Outcome of Patients with Lumbar Spinal Canal Stenosis: Analysis of the Lumbar Stenosis Outcome Study (LSOS) Data

    Full text link
    STUDY DESIGN - Prospective. OBJECTIVE To investigate the influence of paraspinal fatty muscle infiltration (FMI) and cumulative lumbar spine degeneration as assessed by magnetic resonance imaging (MRI) on long-term clinical outcome measures in patients with lumbar spinal canal stenosis (LSCS) of the Lumbar Stenosis Outcome Study (LSOS) cohort. SUMMARY OF BACKGROUND DATA Past studies have tried to establish correlations of morphologic imaging findings in LSCS with clinical endpoints. However, the impact of FMI and overall lumbar spinal degeneration load has not been examined yet. METHODS Patients from the LSOS cohort with moderate to severe LSCS were included. Two radiologists assessed the degree of LSCS as well as cumulative degeneration of the lumbar spine. FMI was graded using the Goutallier scoring system. Spinal Stenosis Measure (SSM) was used to measure the severity level of symptoms and disability. European Quality of Life 5 Dimensions 3 Level Version (EQ-5D-3L) was used to measure health-related quality of life. RESULTS The non-surgically treated group consisted of 116 patients (age 74.8±8.5 y), whereas the surgically treated group included 300 patients (age 72.3±8.2 y). Paraspinal FMI was significantly different between the groups (54.3% vs. 32.0% for Goutallier grade ≥2; P0.05). CONCLUSION FMI is associated with higher disability and worse health-related quality of life of LSCS patients in the LSOS cohort. There was no significant association between total cumulative lumbar spine degeneration and the outcome of either surgically or non-surgically treated patients. LEVEL OF EVIDENCE - Level 3

    Cavitation inception of a van der Waals fluid at a sack-wall obstacle

    Full text link
    Cavitation in a liquid moving past a constraint is numerically investigated by means of a free-energy lattice Boltzmann simulation based on the van der Waals equation of state. The fluid is streamed past an obstacle and, depending on the pressure drop between inlet and outlet, vapor formation underneath the corner of the sack-wall is observed. The circumstances of cavitation formation are investigated and it is found that the local bulk pressure and mean stress are insufficient to explain the phenomenon. Results obtained in this study strongly suggest that the viscous stress, interfacial contributions to the local pressure, and the Laplace pressure are relevant to the opening of a vapor cavity. This can be described by a generalization of Joseph's criterion that includes these contributions. A macroscopic investigation measuring mass flow rate behavior and discharge coefficient was also performed. As theoretically predicted, mass flow rate increases linearly with the square root of the pressure drop. However, when cavitation occurs, the mass flow growth rate is reduced and eventually it collapses into a choked flow state. In the cavitating regime, as theoretically predicted and experimentally verified, the discharge coefficient grows with the Nurick cavitation number

    Magnetoreception in the wood mouse (Apodemus sylvaticus): influence of weak frequency-modulated radio frequency fields

    Get PDF
    The mammalian magnetic sense is predominantly studied in species with reduced vision such as mole-rats and bats. Far less is known about surface-dwelling (epigeic) rodents with well-developed eyes. Here, we tested the wood mouse Apodemus sylvaticus for magnetoreception using a simple behavioural assay in which mice are allowed to build nests overnight in a visually symmetrical, circular arena. The tests were performed in the ambient magnetic field or in a field rotated by 90 degrees. When plotted with respect to magnetic north, the nests were bimodally clustered in the northern and southern sectors, clearly indicating that the animals used magnetic cues. Additionally, mice were tested in the ambient magnetic field with a superimposed radio frequency magnetic field of the order of 100 nT. Wood mice exposed to a 0.9 to 5 MHz frequency sweep changed their preference from north-south to east-west. In contrast to birds, however, a constant frequency field tuned to the Larmor frequency (1.33 MHz) had no effect on mouse orientation. In sum, we demonstrated magnetoreception in wood mice and provide first evidence for a radical-pair mechanism in a mammal

    Identifying reversible and irreversible magnetization changes in prototype patterned media using first- and second-order reversal curves

    Full text link
    Arrays of nanomagnets have important potential applications as future generation ultrahigh-density patterned magnetic recording media, in which each nanomagnet constitutes a single bit. We introduce a powerful technique to identify and quantify reversible and irreversible magnetization changes, a key challenge in characterizing these systems. The experimental protocol consists of measuring a few families of second-order reversal curves along selected profiles in the first-order-reversal-curve diagram, which then can be decomposed into truly irreversible switching events and reversible magnetization changes. The viability of the method is demonstrated for arrays of sub-100-nm Fe nanomagnets, which exhibit complex magnetization reversal processes

    On the Energy Transfer Performance of Mechanical Nanoresonators Coupled with Electromagnetic Fields

    Get PDF
    We study the energy transfer performance in electrically and magnetically coupled mechanical nanoresonators. Using the resonant scattering theory, we show that magnetically coupled resonators can achieve the same energy transfer performance as for their electrically coupled counterparts, or even outperform them within the scale of interest. Magnetic and electric coupling are compared in the Nanotube Radio, a realistic example of a nano-scale mechanical resonator. The energy transfer performance is also discussed for a newly proposed bio-nanoresonator composed of a magnetosomes coated with a net of protein fibers.Comment: 9 Pages, 3 Figure
    corecore