134 research outputs found

    First detection of photospheric depletion in the LMC

    Full text link
    Recent photospheric abundance studies of galactic field RV Tauri stars show that depletion of refractory elements is rather common in these evolved objects. The process that creates this chemical anomaly is not understood well, but it probably requires the presence of gravitationally bound dust in a binary system. We test for the presence of depletion in extra-galactic objects. A detailed photospheric abundance study on the basis of high-quality UVES spectra was performed on the RV Tauri star in the LMC: MACHO82.8405.15. Abundances were derived using a critically compiled line list with accurate log(gf) values and the latest Kurucz model atmospheres. With [Fe/H]=-2.6 in combination with [Zn/Fe]=+2.3 and [S/Ti]=+2.5, MACHO82.8405.15 displays a strong depletion abundance pattern. The effect of the depletion is comparable to the strongest depletions seen in field Galactic RV Tauri stars. The chemical analysis of MACHO82.8405.15 proves that the depletion process also occurs in the extragalactic members of the RV Tauri pulsation class. Our program star is a member of a larger sample of LMC RV Tauri objects. This sample is unique, since the distances of the members are well-constrained. Further studies of this sample are therefore expected to gain deeper insight into the poorly understood depletion phenomenon and of the evolutionary status of RV Tauri stars in general.Comment: 4 pages, 5 figures, accepted by A&A Letter

    IRAS08281-4850 and IRAS14325-6428: two A-type post-AGB stars with s-process enrichment

    Full text link
    One of the puzzling findings in the study of the chemical evolution of (post-)AGB stars is why very similar stars (in terms of metallicity, spectral type, infrared properties, etc...) show a very different photospheric composition. We aim at extending the still limited sample of s-process enriched post-AGB stars, in order to obtain a statistically large enough sample that allows us to formulate conclusions concerning the 3rd dredge-up occurrence. We selected two post-AGB stars on the basis of IR colours indicative of a past history of heavy mass loss: IRAS08281-4850 and IRAS14325-6428. They are cool sources in the locus of the Planetary Nebulae (PNe) in the IRAS colour-colour diagram. Abundances of both objects were derived for the first time on the basis of high-quality UVES and EMMI spectra, using a critically compiled line list with accurate log(gf) values, together with the latest Kurucz model atmospheres. Both objects have very similar spectroscopically defined effective temperatures of 7750-8000K. They are strongly carbon and s-process enriched, with a C/O ratio of 1.9 and 1.6, and an [ls/Fe] of +1.7 and +1.2, for IRAS08281 and IRAS14325 resp. Moreover, the spectral energy distributions (SEDs) point to heavy mass-loss during the preceding AGB phase. IRAS08281 and IRAS14325 are prototypical post-AGB objects in the sense that they show strong post 3rd dredge-up chemical enrichments. The neutron irradiation has been extremely efficient, despite the only mild sub-solar metallicity. This is not conform with the recent chemical models. The existence of very similar post-AGB stars without any enrichment emphasizes our poor knowledge of the details of the AGB nucleosynthesis and dredge-up phenomena. We call for a very systematic chemical study of all cool sources in the PN region of the IRAS colour-colour diagram.Comment: 8 pages, 6 figures, accepted by A&

    A study of the s-process in the carbon-rich post-AGB stars IRAS06530-0213 and IRAS08143-4406 on the basis of VLT-UVES spectra

    Full text link
    In an effort to extend the still limited sample of s-process enriched post-AGB stars, high-resolution, high signal-to-noise VLT+UVES spectra of the optical counterparts of the infrared sources IRAS06530-0213 and IRAS08143-4406 were analysed. The objects are moderately metal deficient by [Fe/H]=-0.5 and -0.4 respectively, carbon-rich and, above all, heavily s-process enhanced with a [ls/Fe] of 1.8 and 1.5 respectively. Especially the spectrum of IRAS06530-0213 is dominated by transitions of s-process species, and therefore resembling the spectrum of IRAS05341+0852, the most s-process enriched object known so far. The two objects are chemically very similar to the 21micron objects discussed in Van Winckel & Reyniers (2000). A homogeneous comparison with the results of these objects reveals that the relation between the third dredge-up efficiency and the neutron nucleosynthesis efficiency found for the 21micron objects, is further strengthened. On the other hand, a detailed comparison with the predictions of the latest AGB models indicates that the observed spread in nucleosynthesis efficiency is certainly intrinsic, and proves that different C-13 pockets are needed for stars with comparable mass and metallicity to explain their abundances.Comment: 14 pages, 10 figures, accepted for publication in A&A; Table 4 is available at ftp://ftp.ster.kuleuven.ac.be/dist/maarten/filescds/ pending upload to CD

    Stellar population synthesis of post-AGB stars: the s-process in MACHO47.2496.8

    Full text link
    The low-metallicity RV Tauri star MACHO47.2496.8, recently discovered in the Large Magellanic Cloud, is highly enriched in carbon and heavy elements produced by the slow neutron capture process (s-process), and is most probably a genuine post-C(N-type) asymptotic giant branch (AGB) star. We use the analysis of the abundances of MACHO47.2496.8 to constrain free parameters in AGB models. We test which values of the free parameters describing uncertain physical mechanisms in AGB stars, namely the third dredge-up and the features of the 13C neutron source, produce models that better match the abundances observed in MACHO47.2496.8. We carry out stellar population synthesis coupled with s-process nucleosynthesis using a synthetic stellar evolution code. The s-process ratios observed in MACHO47.2496.8 can be matched by the same models that explain the s-process ratios of Galactic AGB and post-AGB stars of metallicity > Z_sun/10, except for the choice of the effectiveness of 13C as a neutron source, which has to be lower by roughly a factor of 3 to 6. The less effective neutron source for lower metallicities is also required when comparing population synthesis results to observations of Galactic halo ss-enhanced stars, such as Pb stars. The 12C/13C ratio in MACHO47.2496.8 cannot be matched simultaneously and requires the occurrence of extra-mixing processes. The confirmed trend of the decreased efficiency of the 13C neutron source with metallicity requires an explanation from AGB s-process models. The present work is to date the first comparison between theoretical models and the detailed abundances of an extragalactic post-AGB star.Comment: accepted for publication on Astronomy & Astrophysics Letter

    V453 Oph: a s-process enriched, but carbon-deficient RV Tauri star of low intrinsic metallicity

    Full text link
    This paper reports the detection of a heavy element enriched RV Tauri variable with an abundance pattern that differs significantly from a standard s-process enriched object: V453 Oph. Based on optical high-resolution spectra, we determined that this object of low intrinsic metallicity ([Fe/H] = -2.2) has a mild, but significant, enrichment ([s/Fe] ~ +0.5) of heavy elements for which the distribution points to slow neutron capture nucleosynthesis. This result is strengthened by a comparative analysis to the non-enriched RV Tauri star DS Aqr ([s/Fe] = 0.0). Although V453 Oph is the first RV Tauri star showing a strong s-process signature, it is NOT accompanied by C enhancement, challenging our current nucleosynthetic models of post-AGB stars that predict a simultaneous enrichment in C and s-process elements. The low N abundance excludes CN cycling as being responsible for the low C abundance. We explore three different scenarios to explain the heavy element distribution in this evolved object: an enrichment of the parental cloud, an accretion scenario in which the chemical patterns were acquired by mass transfer in a binary system and an intrinsic enrichment by dredge-up.Comment: Accepted for publication in A&

    IRAS\,11472-0800: an extremely depleted pulsating binary post-AGB star

    Full text link
    We focus here on one particular and poorly studied object, IRAS11472-0800. It is a highly evolved post-Asymptotic Giant Branch (post-AGB) star of spectral type F, with a large infrared excess produced by thermal emission of circumstellar dust. We deploy a multi-wavelength study which includes the analyses of optical and IR spectra as well as a variability study based on photometric and spectroscopic time-series. The spectral energy distribution (SED) properties as well as the highly processed silicate N-band emission show that the dust in IRAS11472-0800 is likely trapped in a stable disc. The energetics of the SED and the colour variability show that our viewing angle is close to edge-on and that the optical flux is dominated by scattered light. With photospheric abundances of [Fe/H] = -2.7 and [Sc/H]=-4.2, we discovered that IRAS11472-0800 is one of the most chemically-depleted objects known to date. Moreover, IRAS11472-0800 is a pulsating star with a period of 31.16 days and a peak-to-peak amplitude of 0.6 mag in V. The radial velocity variability is strongly influenced by the pulsations, but the significant cycle-to-cycle variability is systematic on a longer time scale, which we interpret as evidence for binary motion. We conclude that IRAS11472-0800 is a pulsating binary star surrounded by a circumbinary disc. The line-of-sight towards the object lies close the the orbital plane making that the optical light is dominated by scattered light. IRAS11472-0800 is one of the most chemically-depleted objects known so far and links the dusty RV\,Tauri stars to the non-pulsating class of strongly depleted objects.Comment: 12 pages, 14 figures Accepted for publication in A&A Main Journa
    • …
    corecore