

Al-based coating for coke reduction during ethane steam cracking

Sarris S.A.^a, Olahova N.^a, Dokic M.^a, Couvrat M.^b, Riallant F.^b, Chasselin H.^b, Reyniers M.F.^a, Marin G.B. ^a, Van Geem K.M.^a

^aLaboratory for Chemical Technology, Ghent University

http://www.lct.UGent.be ^bManoir Industries, 12 Rue des Ardennes BP8401 -

Pitres 27108 VAL DE REUIL Cedex

2016 AIChE Annual Meeting, San Francisco, U.S.A

- Introduction
- Experimental procedures
- Effluent analysis
- Coking rates
- SEM & EDX and XPS
- Conclusions
- Acknowledgments

Steam Cracking

Main source of ethylene, propylene and other valuable hydrocarbons (i.e. olefins and aromatics)
→ commercially prevailing petrochemical process

The enemy

Steam cracking is a very complex process:

- ✓ High Temperatures \rightarrow < 1300 °C for the metal
- ✓ Feedstock composition \rightarrow gases to heavy crude oils
- \checkmark Operating conditions \rightarrow steam dilution, pressure, temperature
- \checkmark Reactor configuration \rightarrow heat flux and mixing

Coke formation

Coke formation and Anti-coking

Main mechanisms lead to coke formation:

- Catalytic (initial catalytic behavior)
- ✓ **Radical** (long-term performance)

✓ Condensation (especially in heavy feeds)

Anti-coking technologies:
✓ 3D reactor technologies
✓ Feed additives
✓ Surface technologies

JSR set-up

- Well mixed reactor
- Temperature measurement very close to the coupon
- No reaction before the reactor
- Mass track accuracy of a µg/s
- Different feedstock, different conditions

Suitable for experimental validation of the effect of **material**, **process conditions** and **pretreatments** on coke formation

coupons

On-line measurement of coking rates

- ✓ Initial coking rate is representative of the catalytic coking behavior of an alloy
- ✓ Asymptotic coking rate refers to the long-term behavior of a material

CoatAlloyTM

Studied conditions

Experimental sequence

			3 cc of 6 h and decoking			4 cc of 1 h and decoking			Last cc		
Pi	retreatmei	nt	1-3 cc	Deco	oking	4-7 cc	Deco	king	8 cc Decoking		king
1023 K	1023 K → 1173 K	1173 K	1173 K	1023 K → 1173 K	1173 K	1173 K	1023 K → 1173 K	1173 K	1173 K	1023 K → 1173 K	1173 K
Air	N ₂ + Air or H ₂ O/ Air	H ₂ O/ Air	C ₂ H ₆ + H ₂ O	N ₂ /Air or H ₂ O/ Air	H ₂ O/ Air	C ₂ H ₆ + H ₂ O	N ₂ /Air or H ₂ O/ Air	H ₂ O/ Air	C ₂ H ₆ + H ₂ O	N ₂ /Air or H ₂ O/ Air	H ₂ O/ Air
12-14 h	30 min	15 min	6 h	30 min	15 min	1 h	30 min	15 min	6 h	30 min	15 min
Only before the 1cc							Cooling down				

✓ Absence of Nitrogen during stabilization points

✓ Only Steam/Air treatment is applied for CoatAlloy

Effluent analysis

Alloy	reference	CoatAlloy	reference	CoatAlloy	
Pretreatment	Fe-Ni-Cr optimal	Improved only steam	Fe-Ni-Cr optimal	Improved only steam	
id	(ĊA	CA+PreS		
Cracking Temperature (K)	11	173	1173		
N_2 during stabilization	1	10	no		
dilution	0.	.33	0.33		
CA DMDS (ppmw S per HC)	۷	41	41		
PreS (ppmw DMDS per H ₂ O)		0	500		
component					
H ₂	4.25	4.23	4.26	4.24	
CO ₂	0.003	0.003	0.002	0.003	
СО	0.01	0.01	0.01	0.01	
CH_4	7.05	7.14	7.08	7.17	
C_2H_6	30.21	29.96	30.02	29.88	
C_2H_4	49.76	50.42	49.87	50.41	
C_3H_8	0.11	0.12	0.11	0.12	
C_3H_6	0.76	0.77	0.76	0.77	

✓ No differences are observed in C oxides between coating and reference
✓ No effect of the material in the product distribution

CA effect – Initial Rate

CoatAlloy supresses catalytic coking in comparison with the reference

CA effect – Asymptotic Rate

✓ CoatAlloy performs a factor 2 better than the reference after cyclic aging

CA + PreS effect – Initial Rate

✓ PreS has a less pronounced effect on the reference when is combined with CA → the two materials coke similarly

CA + PreS effect – Asymptotic Rate

CoatAlloy and MXM perform similarly after cyclic aging

SEM & EDX cross sectional analysis

✓ Increased uniformity of the coating is observed after application of steam
✓ The absence of nitrogen during stabilization points is beneficial

XPS analysis pre-nitrated sample

 No nitrogen is identified on the surface of CoatAlloy after exposure to nitrogen

✓ No nitrates are expected to be formed

Conclusions

- ✓ CoatAlloy performs better than the reference under industrially relevant conditions
- ✓ The coating stability, thickness and homogeneity is not affected throughout the cyclic aging experiments
- ✓ Addition of steam during the in-situ decoking and pretreatment of the coating improves its subsequent coking behavior
- ✓ Presulfiding shows no beneficial impact on the coking behavior of CoatAlloy
- ✓ The presence of pure N_2 has a negative effect on the homogeneity of the coating
- ✓ The optimization of the pretreatment depending on the material composition and properties is of great interest

Acknowledgments

- The research leading to these results has received funding from the Long Term Structural Methusalem Funding by the Flemish Government.
- The Laboratory for Chemical Technology

Questions

