70 research outputs found

    A randomized controlled multimodal behavioral intervention trial for improving antiepileptic drug adherence

    Get PDF
    Purpose: Medication nonadherence is one of the most important reasons for treatment failure in patients with epilepsy. The present study investigated the effectiveness of a multicomponent intervention to improve adherence to antiepileptic drug (AED) medication in patients with epilepsy. Methods: In a prospective, randomizedmulticenter trial, three sessions of face-to-facemotivational interviewing (MI) in combination with complementary behavior change techniques were compared with standard care.Motivational interviewing prompted change talk and self-motivated statements from the patients, planning their own medication intake regimen and also identifying and overcoming barriers thatmay prevent adherence. Participants were provided with calendars to self-monitor their medication taking behavior. A family member and the health-care teamwere invited to attend the last session ofMI in order to improve the collaboration and communication between patients, their caregiver or family member, and their health-care provider. At baseline and 6-month follow-up, psychosocial variables and medical adherence were assessed. Results: In total, 275 participantswere included in the study. Comparedwith the active control group, patients in the intervention group reported significantly highermedication adherence, aswell as stronger intention and perceptions of control for taking medication regularly. The intervention group also reported higher levels of action planning, coping planning, self-monitoring, and lower medication concerns. Conclusions: This study shows that MI can be effective in clinical practice to improvemedication adherence in patientswith epilepsy. It also provides evidence that combining volitional interventions, including action planning, coping planning, and self-monitoring withmotivational interviewing can promote the effectiveness of the medical treatments for epilepsy by improving adherenc

    LifeCLEF 2016: Multimedia Life Species Identification Challenges

    Get PDF
    International audienceUsing multimedia identification tools is considered as one of the most promising solutions to help bridge the taxonomic gap and build accurate knowledge of the identity, the geographic distribution and the evolution of living species. Large and structured communities of nature observers (e.g., iSpot, Xeno-canto, Tela Botanica, etc.) as well as big monitoring equipment have actually started to produce outstanding collections of multimedia records. Unfortunately, the performance of the state-of-the-art analysis techniques on such data is still not well understood and is far from reaching real world requirements. The LifeCLEF lab proposes to evaluate these challenges around 3 tasks related to multimedia information retrieval and fine-grained classification problems in 3 domains. Each task is based on large volumes of real-world data and the measured challenges are defined in collaboration with biologists and environmental stakeholders to reflect realistic usage scenarios. For each task, we report the methodology, the data sets as well as the results and the main outcom

    LifeCLEF 2015: Multimedia Life Species Identification Challenges

    Get PDF
    International audienceUsing multimedia identification tools is considered as one of the most promising solutions to help bridging the taxonomic gap and build accurate knowledge of the identity, the geographic distribution and the evolution of living species. Large and structured communities of nature observers (e.g. eBird, Xeno-canto, Tela Botanica, etc.) as well as big monitoring equipments have actually started to produce outstanding collections of multimedia records. Unfortunately, the performance of the state-of-the-art analysis techniques on such data is still not well understood and is far from reaching the real world’s requirements. The LifeCLEF lab proposes to evaluate these challenges around three tasks related to multimedia information retrieval and fine-grained classification problems in three living worlds. Each task is based on large and real-world data and the measured challenges are defined in collaboration with biologists and environmental stakeholders in order to reflect realistic usage scenarios. This paper presents more particularly the 2014 edition of LifeCLEF, i.e. the pilot one. For each of the three tasks, we report the methodology and the datasets as well as the official results and the main outcomes

    Radial evolution of the April 2020 stealth coronal mass ejection between 0.8 and 1 AU - Comparison of Forbush decreases at Solar Orbiter and near the Earth

    Get PDF
    Aims. We present observations of the first coronal mass ejection (CME) observed at the Solar Orbiter spacecraft on April 19, 2020, and the associated Forbush decrease (FD) measured by its High Energy Telescope (HET). This CME is a multispacecraft event also seen near Earth the next day. Methods. We highlight the capabilities of HET for observing small short-term variations of the galactic cosmic ray count rate using its single detector counters. The analytical ForbMod model is applied to the FD measurements to reproduce the Forbush decrease at both locations. Input parameters for the model are derived from both in situ and remote-sensing observations of the CME. Results. The very slow (~350 km/s) stealth CME caused a FD with an amplitude of 3 % in the low-energy cosmic ray measurements at HET and 2 % in a comparable channel of the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter, as well as a 1 % decrease in neutron monitor measurements. Significant differences are observed in the expansion behavior of the CME at different locations, which may be related to influence of the following high speed solar wind stream. Under certain assumptions, ForbMod is able to reproduce the observed FDs in low-energy cosmic ray measurements from HET as well as CRaTER, but with the same input parameters, the results do not agree with the FD amplitudes at higher energies measured by neutron monitors on Earth. We study these discrepancies and provide possible explanations. Conclusions. This study highlights that the novel measurements of the Solar Orbiter can be coordinated with other spacecraft to improve our understanding of space weather in the inner heliosphere. Multi-spacecraft observations combined with data-based modeling are also essential to understand the propagation and evolution of CMEs as well as their space weather impacts

    First year of energetic particle measurements in the inner heliosphere with Solar Orbiter's Energetic Particle Detector

    Get PDF
    Context. Solar Orbiter strives to unveil how the Sun controls and shapes the heliosphere and fills it with energetic particle radiation. To this end, its Energetic Particle Detector (EPD) has now been in operation, providing excellent data, for just over a year. Aims. EPD measures suprathermal and energetic particles in the energy range from a few keV up to (near-) relativistic energies (few MeV for electrons and about 500 MeV nuc−1 for ions). We present an overview of the initial results from the first year of operations and we provide a first assessment of issues and limitations. In addition, we present areas where EPD excels and provides opportunities for significant scientific progress in understanding how our Sun shapes the heliosphere. Methods. We used the solar particle events observed by Solar Orbiter on 21 July and between 10 and 11 December 2020 to discuss the capabilities, along with updates and open issues related to EPD on Solar Orbiter. We also give some words of caution and caveats related to the use of EPD-derived data. Results. During this first year of operations of the Solar Orbiter mission, EPD has recorded several particle events at distances between 0.5 and 1 au from the Sun. We present dynamic and time-averaged energy spectra for ions that were measured with a combination of all four EPD sensors, namely: the SupraThermal Electron and Proton sensor (STEP), the Electron Proton Telescope (EPT), the Suprathermal Ion Spectrograph (SIS), and the High-Energy Telescope (HET) as well as the associated energy spectra for electrons measured with STEP and EPT. We illustrate the capabilities of the EPD suite using the 10 and 11 December 2020 solar particle event. This event showed an enrichment of heavy ions as well as 3He, for which we also present dynamic spectra measured with SIS. The high anisotropy of electrons at the onset of the event and its temporal evolution is also shown using data from these sensors. We discuss the ongoing in-flight calibration and a few open instrumental issues using data from the 21 July and the 10 and 11 December 2020 events and give guidelines and examples for the usage of the EPD data. We explain how spacecraft operations may affect EPD data and we present a list of such time periods in the appendix. A list of the most significant particle enhancements as observed by EPT during this first year is also provided.Ministerio de Economía y CompetitividadAgencia Estatal de Investigació

    The quijote simulations

    Get PDF
    The Quijote simulations are a set of 44,100 full N-body simulations spanning more than 7000 cosmological models in the hyperplane. At a single redshift, the simulations contain more than 8.5 trillion particles over a combined volume of 44,100 each simulation follows the evolution of 2563, 5123, or 10243 particles in a box of 1 h -1 Gpc length. Billions of dark matter halos and cosmic voids have been identified in the simulations, whose runs required more than 35 million core hours. The Quijote simulations have been designed for two main purposes: (1) to quantify the information content on cosmological observables and (2) to provide enough data to train machine-learning algorithms. In this paper, we describe the simulations and show a few of their applications. We also release the petabyte of data generated, comprising hundreds of thousands of simulation snapshots at multiple redshifts; halo and void catalogs; and millions of summary statistics, such as power spectra, bispectra, correlation functions, marked power spectra, and estimated probability density functions

    First year of energetic particle measurements in the inner heliosphere with Solar Orbiter's Energetic Particle Detector

    Get PDF
    Context. Solar Orbiter strives to unveil how the Sun controls and shapes the heliosphere and fills it with energetic particle radiation. To this end, its Energetic Particle Detector (EPD) has now been in operation, providing excellent data, for just over a year.Aims. EPD measures suprathermal and energetic particles in the energy range from a few keV up to (near-) relativistic energies (few MeV for electrons and about 500 MeV nuc(-1) for ions). We present an overview of the initial results from the first year of operations and we provide a first assessment of issues and limitations. In addition, we present areas where EPD excels and provides opportunities for significant scientific progress in understanding how our Sun shapes the heliosphere.Methods. We used the solar particle events observed by Solar Orbiter on 21 July and between 10 and 11 December 2020 to discuss the capabilities, along with updates and open issues related to EPD on Solar Orbiter. We also give some words of caution and caveats related to the use of EPD-derived data.Results. During this first year of operations of the Solar Orbiter mission, EPD has recorded several particle events at distances between 0.5 and 1 au from the Sun. We present dynamic and time-averaged energy spectra for ions that were measured with a combination of all four EPD sensors, namely: the SupraThermal Electron and Proton sensor (STEP), the Electron Proton Telescope (EPT), the Suprathermal Ion Spectrograph (SIS), and the High-Energy Telescope (HET) as well as the associated energy spectra for electrons measured with STEP and EPT. We illustrate the capabilities of the EPD suite using the 10 and 11 December 2020 solar particle event. This event showed an enrichment of heavy ions as well as He-3, for which we also present dynamic spectra measured with SIS. The high anisotropy of electrons at the onset of the event and its temporal evolution is also shown using data from these sensors. We discuss the ongoing in-flight calibration and a few open instrumental issues using data from the 21 July and the 10 and 11 December 2020 events and give guidelines and examples for the usage of the EPD data. We explain how spacecraft operations may affect EPD data and we present a list of such time periods in the appendix. A list of the most significant particle enhancements as observed by EPT during this first year is also provided.</p

    First near-relativistic solar electron events observed by EPD onboard Solar Orbiter

    Get PDF
    Context. Solar Orbiter, launched in February 2020, started its cruise phase in June 2020, in coincidence with its first perihelion at 0.51 au from the Sun. The in situ instruments onboard, including the Energetic Particle Detector (EPD), operate continuously during the cruise phase enabling the observation of solar energetic particles. Aims. In situ measurements of the first near-relativistic solar electron events observed in July 2020 by EPD are analyzed and the solar origins and the conditions for the interplanetary transport of these particles investigated. Methods. Electron observations from keV energies to the near-relativistic range were combined with the detection of type III radio bursts and extreme ultraviolet (EUV) observations from multiple spacecraft in order to identify the solar origin of the electron events. Electron anisotropies and timing as well as the plasma and magnetic field environment were evaluated to characterize the interplanetary transport conditions. Results. All electron events were clearly associated with type III radio bursts. EUV jets were also found in association with all of them except one. A diversity of time profiles and pitch-angle distributions was observed. Different source locations and different magnetic connectivity and transport conditions were likely involved. The July 11 event was also detected by Wind, separated 107 degrees in longitude from Solar Orbiter. For the July 22 event, the Suprathermal Electron and Proton sensor of EPD allowed for us to not only resolve multiple electron injections at low energies, but it also provided an exceptionally high pitch-angle resolution of a very anisotropic beam. This, together with radio observations of local Langmuir waves suggest a very good magnetic connection during the July 22 event. This scenario is challenged by a high-frequency occultation of the type III radio burst and a nominally non-direct connection to the source; therefore, magnetic connectivity requires further investigation.</p

    The first widespread solar energetic particle event observed by Solar Orbiter on 2020 November 29

    Get PDF
    Context. On 2020 November 29, the first widespread solar energetic particle (SEP) event of solar cycle 25 was observed at four widely separated locations in the inner (less than or similar to 1AU) heliosphere. Relativistic electrons as well as protons with energies >50MeV were observed by Solar Orbiter (SolO), Parker Solar Probe, the Solar Terrestrial Relations Observatory (STEREO)-A and multiple near-Earth spacecraft. The SEP event was associated with an M4.4 class X-ray flare and accompanied by a coronal mass ejection and an extreme ultraviolet (EUV) wave as well as a type II radio burst and multiple type III radio bursts.Aims. We present multi-spacecraft particle observations and place them in context with source observations from remote sensing instruments and discuss how such observations may further our understanding of particle acceleration and transport in this widespread event.Methods. Velocity dispersion analysis (VDA) and time shift analysis (TSA) were used to infer the particle release times at the Sun. Solar wind plasma and magnetic field measurements were examined to identify structures that influence the properties of the energetic particles such as their intensity. Pitch angle distributions and first-order anisotropies were analyzed in order to characterize the particle propagation in the interplanetary medium.Results. We find that during the 2020 November 29 SEP event, particles spread over more than 230 degrees in longitude close to 1AU. The particle onset delays observed at the different spacecraft are larger as the flare-footpoint angle increases and are consistent with those from previous STEREO observations. Comparing the timing when the EUV wave intersects the estimated magnetic footpoints of each spacecraft with particle release times from TSA and VDA, we conclude that a simple scenario where the particle release is only determined by the EUV wave propagation is unlikely for this event. Observations of anisotropic particle distributions at SolO, Wind, and STEREO-A do not rule out that particles are injected over a wide longitudinal range close to the Sun. However, the low values of the first-order anisotropy observed by near-Earth spacecraft suggest that di ffusive propagation processes are likely involved.</p
    corecore