48 research outputs found

    Sudden change in long-term ocean climate fluctuations corresponds with ecosystem alterations and reduced recruitment in Norwegian spring-spawning herring (Clupea harengus, Clupeidae)

    Get PDF
    Fish stocks vary in abundance. The causes behind the fluctuations may be difficult to determine, especially ones caused by natural fluctuations, but long‐term data series may provide indications of the mechanisms. Assessments show that the recruitment to the Norwegian spring‐spawning herring (Clupea harengus, Clupeidae) has remained low since 2004, a year which produced the last really rich year‐class. Long time‐series of estimated recruitment and mean winter temperature in the ocean showed a significant positive correlation for the period 1921–2004. Here, we show that this positive correlation did not continue from 2005 onwards as the winter temperature increased to high levels while herring recruitment decreased and has remained low. The density of zooplankton in the drift route of the herring larvae dropped significantly after 2004, and their centre of gravity shifted northwards. There may currently be heavy predation on the larvae by Atlanic mackerel (Scomber scombrus, Scombridae), and top‐down regulation is suggested to hamper successful recruitment. Our analysis indicates that the presence of food and overlap with high food concentrations are likely important regulators of survival in herring larvae. The findings may be important for future management and planning of fisheries of this stock because recruitment failure may continue if temperature remains high and food abundance remains low.publishedVersio

    Final Report of the Fifth Meeting of Scientific Experts on Fish Stocks in the Central Arctic Ocean

    Get PDF
    This report provides a summary of the 5th meeting of scientific experts on Fish Stocks in the Central Arctic Ocean (FiSCAO) on October 24‐26, 2017, in Ottawa, Canada. At the request of the 10 parties negotiating on an agreement to prevent unregulated commercial fishing in the High Seas portion of the Central Arctic Ocean (CAO), participants of the 5th FiSCAO meeting were tasked with addressing four Terms of Reference, summarized below: ToR 1. Design a 1‐3 year long mapping program. ToR 2. Design a monitoring program. ToR 3. Identify human, financial, vessel/equipment resources needed for mapping and monitoring. ToR 4. Develop data collection, sharing, and hosting protocols that outline the details of what and how data shall be collected, shared, and hosted for consideration by the Parties. The 5th FiSCAO meeting included scientific representatives from seven states including Canada, the People's Republic of China, the European Union, Iceland, the Republic of Korea, the Kingdom of Norway and the United States of America. The meeting also included representatives from the International Council for the Exploration of the Sea (ICES), the North Pacific Marine Science Organization (PICES) and the Arctic Council’s Protection of the Arctic Marine Environment (PAME) and Conservation of Arctic Flora and Fauna (CAFF) working groups. The report summarizes the elements for collecting baseline data (i.e., a mapping program) in the high seas CAO to achieve the goals of documenting species distributions, relative abundances and key ecosystem parameters (ToR 1). The mapping program describes the priority areas to sample, the types of data to collect and possible data collection approaches to employ. Participants emphasized that existing planned surveys are very limited, and that significant dedicated resources will be required to implement the mapping program. The report outlines a strategy for monitoring indicators of fish stocks and ecosystem components (ToR 2). The report includes a list of existing monitoring programs and a prioritized list of indicators to detect environmental change in the high seas CAO. Further refinement of a monitoring program will use information from the mapping program (ToR 1). Participants emphasized the need to begin monitoring as soon as possible and that additional research is required to operationalize monitoring indicators. The report summarizes the preliminary cost estimates (ToR 3) to implement a mapping program to collect data in the high seas portion of the CAO using a vessel of opportunity and in the Pacific Gateway region of the CAO using an independently‐organized survey. Cost implications for the monitoring program and other scientific activities are also listed (e.g., data analysis, data management). The report includes a draft data sharing policy as the foundation for a future data sharing protocol, including the technical specifications for data sharing (ToR 4). The development of the data sharing protocol will require negotiation and legal review among the participating states. A data management and data sharing pilot study on a CAO fish database is suggested to test a framework

    Benthic response to sedimentation events during autumn to spring at a shallow-water station in the Western Kiel Bight

    Get PDF
    The response of the benthos to the break up of anoxia in the Kiel Bight (Western Baltic Sea), and to three succeeding events of “external” food supply, consisting of a settled autumn plankton bloom, resuspended matter and macrophyte input during winter, and of a sedimented spring phytoplankton bloom, is described on a community level. The first input of oxygen broke up anoxic conditions and made stored food resources available to decomposition. This “internal” food supply, mainly consisting of protein (folin positive matter), was followed by a drastic increase in heat production and ATP-biomass and caused a period of low redox potential, which lasted for several weeks. During this phase, a plankton bloom (dinoflagellates and diatoms) settled to the sea floor. Although there was an immediate response of benthic activity, this food input was not completely consumed by the strongly disturbed benthic community. During winter resuspended matter and the input of macrophyte debris caused another maximum in benthic activity and biomass despite the low temperature. The response to sedimentation of cells from a diatom bloom during mid March was also without any time lag and was consumed within 5–6 wk. A comparison of the amount of particles collected in a sediment trap with the increase of organic matter in the sediment demonstrated that the sediment collected four times (autumn) and seven to eight times (spring) more than measured by the sediment trap. Strong indications of food limitation of benthic activity were found. During autumn and winter these indications were caused more by physical than by biological processes. The three events of “external” food supply caused a temporary shift in the type of metabolism towards fermentation processes and reduced the redox potential. In spring the development of the benthic community was still being strongly influenced by the events of the preceding summer and autumn

    Population genomics of marine zooplankton

    Get PDF
    Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Bucklin, Ann et al. "Population Genomics of Marine Zooplankton." Population Genomics: Marine Organisms. Ed. Om P. Rajora and Marjorie Oleksiak. Springer, 2018. doi:10.1007/13836_2017_9.The exceptionally large population size and cosmopolitan biogeographic distribution that distinguish many – but not all – marine zooplankton species generate similarly exceptional patterns of population genetic and genomic diversity and structure. The phylogenetic diversity of zooplankton has slowed the application of population genomic approaches, due to lack of genomic resources for closelyrelated species and diversity of genomic architecture, including highly-replicated genomes of many crustaceans. Use of numerous genomic markers, especially single nucleotide polymorphisms (SNPs), is transforming our ability to analyze population genetics and connectivity of marine zooplankton, and providing new understanding and different answers than earlier analyses, which typically used mitochondrial DNA and microsatellite markers. Population genomic approaches have confirmed that, despite high dispersal potential, many zooplankton species exhibit genetic structuring among geographic populations, especially at large ocean-basin scales, and have revealed patterns and pathways of population connectivity that do not always track ocean circulation. Genomic and transcriptomic resources are critically needed to allow further examination of micro-evolution and local adaptation, including identification of genes that show evidence of selection. These new tools will also enable further examination of the significance of small-scale genetic heterogeneity of marine zooplankton, to discriminate genetic “noise” in large and patchy populations from local adaptation to environmental conditions and change.Support was provided by the US National Science Foundation to AB and RJO (PLR-1044982) and to RJO (MCB-1613856); support to IS and MC was provided by Nord University (Norway)

    On the dynamics of the adenylate energy system: homeorhesis vs homeostasis.

    Get PDF
    Biochemical energy is the fundamental element that maintains both the adequate turnover of the biomolecular structures and the functional metabolic viability of unicellular organisms. The levels of ATP, ADP and AMP reflect roughly the energetic status of the cell, and a precise ratio relating them was proposed by Atkinson as the adenylate energy charge (AEC). Under growth-phase conditions, cells maintain the AEC within narrow physiological values, despite extremely large fluctuations in the adenine nucleotides concentration. Intensive experimental studies have shown that these AEC values are preserved in a wide variety of organisms, both eukaryotes and prokaryotes. Here, to understand some of the functional elements involved in the cellular energy status, we present a computational model conformed by some key essential parts of the adenylate energy system. Specifically, we have considered (I) the main synthesis process of ATP from ADP, (II) the main catalyzed phosphotransfer reaction for interconversion of ATP, ADP and AMP, (III) the enzymatic hydrolysis of ATP yielding ADP, and (IV) the enzymatic hydrolysis of ATP providing AMP. This leads to a dynamic metabolic model (with the form of a delayed differential system) in which the enzymatic rate equations and all the physiological kinetic parameters have been explicitly considered and experimentally tested in vitro. Our central hypothesis is that cells are characterized by changing energy dynamics (homeorhesis). The results show that the AEC presents stable transitions between steady states and periodic oscillations and, in agreement with experimental data these oscillations range within the narrow AEC window. Furthermore, the model shows sustained oscillations in the Gibbs free energy and in the total nucleotide pool. The present study provides a step forward towards the understanding of the fundamental principles and quantitative laws governing the adenylate energy system, which is a fundamental element for unveiling the dynamics of cellular life

    Overwintering individuals of the Arctic krill Thysanoessa inermis appear tolerant to short-term exposure to low pH conditions

    Get PDF
    Areas of the Arctic Ocean are already experiencing seasonal variation in low pH/elevated pCO2 and are predicted to be the most affected by future ocean acidification (OA). Krill play a fundamental ecological role within Arctic ecosystems, serving as a vital link in the transfer of energy from phytoplankton to higher trophic levels. However, little is known of the chemical habitat occupied by Arctic invertebrate species, and of their responses to changes in seawater pH. Therefore, understanding krill’s responses to low pH conditions has important implications for the prediction of how Arctic marine communities may respond to future ocean change. Here, we present natural seawater carbonate chemistry conditions found in the late polar winter (April) in Kongsfjord, Svalbard (79°North) as well as the response of the Arctic krill, Thysanoessa inermis, exposed to a range of low pH conditions. Standard metabolic rate (measured as oxygen consumption) and energy metabolism markers (incl. adenosine triphosphate (ATP) and l-lactate) of T. inermis were examined. We show that after a 7 days experiment with T. inermis, no significant effects of low pH on MO2, ATP and l-lactate were observed. Additionally, we report carbonate chemistry from within Kongsfjord, which showed that the more stratified inner fjord had lower total alkalinity, higher dissolved inorganic carbon, pCO2 and lower pH than the well-mixed outer fjord. Consequently, our results suggest that overwintering individuals of T. inermis may possess sufficient ability to tolerate short-term low pH conditions due to their migratory behaviour, which exposes T. inermis to the naturally varying carbonate chemistry observed within Kongsfjord, potentially allowing T. inermis to tolerate future OA scenarios
    corecore