2,918 research outputs found

    A Step-by-step Guide to the Realisation of Advanced Optical Tweezers

    Get PDF
    Since the pioneering work of Arthur Ashkin, optical tweezers have become an indispensable tool for contactless manipulation of micro- and nanoparticles. Nowadays optical tweezers are employed in a myriad of applications demonstrating the importance of these tools. While the basic principle of optical tweezers is the use of a strongly focused laser beam to trap and manipulate particles, ever more complex experimental set-ups are required in order to perform novel and challenging experiments. With this article, we provide a detailed step- by-step guide for the construction of advanced optical manipulation systems. First, we explain how to build a single-beam optical tweezers on a home-made microscope and how to calibrate it. Improving on this design, we realize a holographic optical tweezers, which can manipulate independently multiple particles and generate more sophisticated wavefronts such as Laguerre-Gaussian beams. Finally, we explain how to implement a speckle optical tweezers, which permit one to employ random speckle light fields for deterministic optical manipulation.Comment: 29 pages, 7 figure

    Influence of rotational force fields on the determination of the work done on a driven Brownian particle

    Full text link
    For a Brownian system the evolution of thermodynamic quantities is a stochastic process. In particular, the work performed on a driven colloidal particle held in an optical trap changes for each realization of the experimental manipulation, even though the manipulation protocol remains unchanged. Nevertheless, the work distribution is governed by established laws. Here, we show how the measurement of the work distribution is influenced by the presence of rotational, i.e. nonconservative, radiation forces. Experiments on particles of different materials show that the rotational radiation forces, and therefore their effect on the work distributions, increase with the particle refractive index.Comment: 12 pages, 4 figure

    Spectral isolation of naturally reductive metrics on simple Lie groups

    Full text link
    We show that within the class of left-invariant naturally reductive metrics MNat(G)\mathcal{M}_{\operatorname{Nat}}(G) on a compact simple Lie group GG, every metric is spectrally isolated. We also observe that any collection of isospectral compact symmetric spaces is finite; this follows from a somewhat stronger statement involving only a finite part of the spectrum.Comment: 19 pages, new title and abstract, revised introduction, new result demonstrating that any collection of isospectral compact symmetric spaces must be finite, to appear Math Z. (published online Dec. 2009

    ASCA and contemporaneous ground-based observations of the BL Lacertae objects 1749+096 and 2200+420 (BL Lac)

    Get PDF
    We present ASCA observations of the radio-selected BL Lacertae objects 1749+096 (z=0.32) and 2200+420 (BL Lac, z=0.069) performed in 1995 Sept and Nov, respectively. The ASCA spectra of both sources can be described as a first approximation by a power law with photon index Gamma ~ 2. This is flatter than for most X-ray-selected BL Lacs observed with ASCA, in agreement with the predictions of current blazar unification models. While 1749+096 exhibits tentative evidence for spectral flattening at low energies, a concave continuum is detected for 2200+420: the steep low-energy component is consistent the high-energy tail of the synchrotron emission responsible for the longer wavelengths, while the harder tail at higher energies is the onset of the Compton component. The spectral energy distributions from radio to gamma-rays are consistent with synchrotron-self Compton emission from a single homogeneous region shortward of the IR/optical wavelengths, with a second component in the radio domain related to a more extended emission region. For 2200+420, comparing the 1995 Nov state with the optical/GeV flare of 1997 July, we find that models requiring inverse Compton scattering of external photons provide a viable mechanism for the production of the highest (GeV) energies during the flare. An increase of the external radiation density and of the power injected in the jet can reproduce the flat gamma-ray continuum observed in 1997 July. A directly testable prediction of this model is that the line luminosity in 2200+420 should vary shortly after (~1 month) a non-thermal synchrotron flare.Comment: 28 pages,6 figures, 5 tables; LaTeX document. accepted for publication in the Astrophysical Journa

    Spectroscopy of BL Lac Objects: new redshifts and mis-identified sources

    Get PDF
    We are carrying out a program of high signal to noise optical spectroscopy of BL Lacs with unknown or tentative redshift. Here we report some preliminary results. New redshifts are measured for PKS0754+100 (z=0.266) and 1ES0715-259 (z=0.464) . From lineless spectra of PG1553+113 and PKS1722+119 we set a lower limit of z>0.3 for both sources. In two cases (UM493 and 1620+103) stellar spectra indicate a wrong classification.Comment: 4 pages; Conference proceeding "High Energy Blazar Astronomy", Tuorla Observatory, Finland, 17-21 June 2002; to be published in the PASP conference serie

    Further Closing the Resolution Gap: Integrating Cryo-Soft X-Ray and Light Microscopies

    Get PDF
    Abstract Water megamasers from circumnuclear disks in galaxy centers provide the most accurate measurements of supermassive black hole masses and uniquely probe the subparsec accretion processes. At the same time, these systems offer independent crucial constraints of the Hubble constant in the nearby universe, and thus, the arguably best single constraint on the nature of dark energy. The chances of finding these golden standards are, however, abysmally low, at ?3% overall for any level of water maser emission detected at 22 GHz and ?1% for those exhibiting disk-like configuration. We provide here a thorough summary of the current state of detection of water megamaser disks along with a novel investigation of the likelihood of increasing their detection rates based on a multivariate parameter analysis of the optical and mid-infrared (mid-IR) photometric properties of the largest database of galaxies surveyed for 22 GHz emission. We find that galaxies with water megamaser emission tend to be associated with strong emission in all Wide-field Infrared Survey Explorer mid-IR wavelengths, with the strongest enhancement in the W4 band, at 22 μm, as well as with previously proposed and newly found indicators of active galactic nucleus strength in the mid-IR, such as red W1???W2 and W1???W4 colors, and the integrated mid-IR luminosity of the host galaxy. These trends offer a potential boost of the megamaser detection rates to 6%–15%, or a factor of 2–8 relative to the current rates, depending on the chosen sample selection criteria, while fostering real chances for discovering ?20 new megamaser disks

    A ~4.6 h quasi-periodic oscillation in the BL Lacertae PKS 2155-304?

    Full text link
    We report a possible detection of an ~4.6-hour quasi-periodic oscillation (QPO) in the 0.3-10 keV emission of the high-energy peaked blazar PKS 2155-304 from a 64 ks observation by the XMM-Newton EPIC/pn detector. We identify a total modulation of ~5% in the light curve and confirm that nominal period by periodogram, structure function and wavelet analyses. The limited light curve duration allows the capture of only 3.8 cycles of this oscillation and thus precludes a very strong claim for this QPO, despite a nominally high (>3 sigma) statistical significance. We briefly discuss models capable of producing an X-ray QPO of such a period in a blazar.Comment: 4 pages, 6 figures, accepted for publication in A&A Letter

    Measuring the Polarization of a Rapidly Precessing Deuteron Beam

    Get PDF
    This paper describes a time-marking system that enables a measurement of the in-plane (horizontal) polarization of a 0.97-GeV/c deuteron beam circulating in the Cooler Synchrotron (COSY) at the Forschungszentrum J\"ulich. The clock time of each polarimeter event is used to unfold the 120-kHz spin precession and assign events to bins according to the direction of the horizontal polarization. After accumulation for one or more seconds, the down-up scattering asymmetry can be calculated for each direction and matched to a sinusoidal function whose magnitude is proportional to the horizontal polarization. This requires prior knowledge of the spin tune or polarization precession rate. An initial estimate is refined by re-sorting the events as the spin tune is adjusted across a narrow range and searching for the maximum polarization magnitude. The result is biased toward polarization values that are too large, in part because of statistical fluctuations but also because sinusoidal fits to even random data will produce sizeable magnitudes when the phase is left free to vary. An analysis procedure is described that matches the time dependence of the horizontal polarization to templates based on emittance-driven polarization loss while correcting for the positive bias. This information will be used to study ways to extend the horizontal polarization lifetime by correcting spin tune spread using ring sextupole fields and thereby to support the feasibility of searching for an intrinsic electric dipole moment using polarized beams in a storage ring. This paper is a combined effort of the Storage Ring EDM Collaboration and the JEDI Collaboration.Comment: 28 pages, 15 figures, prepared for Physical Review ST - Accelerators and Beam
    corecore