We show that within the class of left-invariant naturally reductive metrics
MNat(G) on a compact simple Lie group G, every
metric is spectrally isolated. We also observe that any collection of
isospectral compact symmetric spaces is finite; this follows from a somewhat
stronger statement involving only a finite part of the spectrum.Comment: 19 pages, new title and abstract, revised introduction, new result
demonstrating that any collection of isospectral compact symmetric spaces
must be finite, to appear Math Z. (published online Dec. 2009