2,318 research outputs found
Nuclear Structure and Response based on Correlated Realistic NN Interactions
Starting from the Argonne V18 nucleon-nucleon (NN) interaction and using the
Unitary Correlation Operator Method, a correlated interaction v_UCOM has been
constructed, which is suitable for calculations within restricted Hilbert
spaces. In this work we employ the v_UCOM in Hartree-Fock, perturbation-theory
and RPA calculations and we study the ground-state properties of various
closed-shell nuclei, as well as some excited states. The present calculations
provide also important feedback for the optimization of the v_UCOM and valuable
information on its properties. The above scheme offers the prospect of ab
initio calculations in nuclei, regardless of their mass number. It can be used
in conjunction with other realistic NN interactions as well, and with various
many-body methods (Second RPA, QRPA, Shell Model, etc.).Comment: 3 pages, incl. 2 figures; Proc. Int. Conf. on Frontiers in Nuclear
Structure, Astrophysics and Reactions (FINUSTAR), Kos, Greece, Sept.200
Nuclear Structure in the UCOM Framework: From Realistic Interactions to Collective Excitations
The Unitary Correlation Operator Method (UCOM) provides a means for nuclear
structure calculations starting from realistic NN potentials. The dominant
short-range central and tensor correlations are described explicitly by a
unitary transformation. The application of UCOM in the context of the no-core
shell model provides insight into the interplay between dominant short-range
and residual long-range correlations in the nuclear many-body problem. The use
of the correlated interaction within Hartree-Fock, many-body perturbation
theory, and Random Phase Approximation gives access to various nuclear
structure observables throughout the nuclear chart.Comment: 9 pages, 3 figures, invited talk at the 2nd Int. Conf. on "Collective
Motion in Nuclei under Extreme Conditions" (COMEX 2), Sankt Goar, German
Hartree-Fock and Many-Body Perturbation Theory with Correlated Realistic NN-Interactions
We employ correlated realistic nucleon-nucleon interactions for the
description of nuclear ground states throughout the nuclear chart within the
Hartree-Fock approximation. The crucial short-range central and tensor
correlations, which are induced by the realistic interaction and cannot be
described by the Hartree-Fock many-body state itself, are included explicitly
by a state-independent unitary transformation in the framework of the unitary
correlation operator method (UCOM). Using the correlated realistic interaction
V_UCOM resulting from the Argonne V18 potential, bound nuclei are obtained
already on the Hartree-Fock level. However, the binding energies are smaller
than the experimental values because long-range correlations have not been
accounted for. Their inclusion by means of many-body perturbation theory leads
to a remarkable agreement with experimental binding energies over the whole
mass range from He-4 to Pb-208, even far off the valley of stability. The
observed perturbative character of the residual long-range correlations and the
apparently small net effect of three-body forces provides promising
perspectives for a unified nuclear structure description.Comment: 14 pages, 8 figures, 3 tables, using REVTEX
Collective excitations in the Unitary Correlation Operator Method and relativistic QRPA studies of exotic nuclei
The collective excitation phenomena in atomic nuclei are studied in two
different formulations of the Random Phase Approximation (RPA): (i) RPA based
on correlated realistic nucleon-nucleon interactions constructed within the
Unitary Correlation Operator Method (UCOM), and (ii) relativistic RPA (RRPA)
derived from effective Lagrangians with density-dependent meson-exchange
interactions. The former includes the dominant interaction-induced short-range
central and tensor correlations by means of an unitary transformation. It is
shown that UCOM-RPA correlations induced by collective nuclear vibrations
recover a part of the residual long-range correlations that are not explicitly
included in the UCOM Hartree-Fock ground state. Both RPA models are employed in
studies of the isoscalar monopole resonance (ISGMR) in closed-shell nuclei
across the nuclide chart, with an emphasis on the sensitivity of its properties
on the constraints for the range of the UCOM correlation functions. Within the
Relativistic Quasiparticle RPA (RQRPA) based on Relativistic Hartree-Bogoliubov
model, the occurrence of pronounced low-lying dipole excitations is predicted
in nuclei towards the proton drip-line. From the analysis of the transition
densities and the structure of the RQRPA amplitudes, it is shown that these
states correspond to the proton pygmy dipole resonance.Comment: 15 pages, 4 figures, submitted to Physics of Atomic Nuclei,
conference proceedings, "Frontiers in the Physics of Nucleus", St.
Petersburg, 28. June-1. July, 200
Bursts in the Chaotic Trajectory Lifetimes Preceding the Controlled Periodic Motion
The average lifetime () it takes for a randomly started trajectory
to land in a small region () on a chaotic attractor is studied. is
an important issue for controlling chaos. We point out that if the region
is visited by a short periodic orbit, the lifetime strongly deviates
from the inverse of the naturally invariant measure contained within that
region (). We introduce the formula that relates
to the expanding eigenvalue of the short periodic orbit
visiting .Comment: Accepted for publication in Phys. Rev. E, 3 PS figure
Incidence, outcomes, and risk factors of pleural effusion in patients receiving dasatinib therapy for Philadelphia chromosome-positive leukemia.
Dasatinib, a second-generation BCR-ABL1 tyrosine kinase inhibitor, is approved for the treatment of chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia, both as first-line therapy and after imatinib intolerance or resistance. While generally well tolerated, dasatinib has been associated with a higher risk for pleural effusions. Frequency, risk factors, and outcomes associated with pleural effusion were assessed in two phase 3 trials (DASISION and 034/Dose-optimization) and a pooled population of 11 trials that evaluated patients with chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia treated with dasatinib (including DASISION and 034/Dose-optimization). In this largest assessment of patients across the dasatinib clinical trial program (N=2712), pleural effusion developed in 6-9% of patients at risk annually in DASISION, and in 5-15% of patients at risk annually in 034/Dose-optimization. With a minimum follow up of 5 and 7 years, drug-related pleural effusion occurred in 28% of patients in DASISION and in 33% of patients in 034/Dose-optimization, respectively. A significant risk factor identified for developing pleural effusion by a multivariate analysis was age. We found that overall responses to dasatinib, progression-free survival, and overall survival were similar in patients who developed pleural effusion and in patients who did not. clinicaltrials.gov identifier 00481247; 00123474
Nonabelian density functional theory
Given a vector space of microscopic quantum observables, density functional
theory is formulated on its dual space. A generalized Hohenberg-Kohn theorem
and the existence of the universal energy functional in the dual space are
proven. In this context ordinary density functional theory corresponds to the
space of one-body multiplication operators. When the operators close under
commutation to form a Lie algebra, the energy functional defines a Hamiltonian
dynamical system on the coadjoint orbits in the algebra's dual space. The
enhanced density functional theory provides a new method for deriving the group
theoretic Hamiltonian on the coadjoint orbits from the exact microscopic
Hamiltonian.Comment: 1 .eps figur
Isoscalar dipole coherence at low energies and forbidden E1 strength
In 16O and 40Ca an isoscalar, low-energy dipole transition (IS-LED)
exhausting approximately 4% of the isoscalar dipole (ISD) energy-weighted sum
rule is experimentally known, but conspicuously absent from recent theoretical
investigations of ISD strength. The IS-LED mode coincides with the so-called
isospin-forbidden E1 transition. We report that for N=Z nuclei up to 100Sn the
fully self-consistent Random-Phase-Approximation with finite-range forces,
phenomenological and realistic, yields a collective IS-LED mode, typically
overestimating its excitation energy, but correctly describing its IS strength
and electroexcitation form factor. The presence of E1 strength is solely due to
the Coulomb interaction between the protons and the resulting isospin-symmetry
breaking. The smallness of its value is related to the form of the transition
density, due to translational invariance. The calculated values of E1 and ISD
strength carried by the IS-LED depend on the effective interaction used.
Attention is drawn to the possibility that in N-not-equal-Z nuclei this
distinct mode of IS surface vibration can develop as such or mix strongly with
skin modes and thus influence the pygmy dipole strength as well as the ISD
strength function. In general, theoretical models currently in use may be unfit
to predict its precise position and strength, if at all its existence.Comment: 9 pages, 6 figures, EPJA submitte
Relativistic QRPA calculation of muon capture rates
The relativistic proton-neutron quasiparticle random phase approximation
(PN-RQRPA) is applied in the calculation of total muon capture rates on a large
set of nuclei from C to Pu, for which experimental values are
available. The microscopic theoretical framework is based on the Relativistic
Hartree-Bogoliubov (RHB) model for the nuclear ground state, and transitions to
excited states are calculated using the PN-RQRPA. The calculation is fully
consistent, i.e., the same interactions are used both in the RHB equations that
determine the quasiparticle basis, and in the matrix equations of the PN-RQRPA.
The calculated capture rates are sensitive to the in-medium quenching of the
axial-vector coupling constant. By reducing this constant from its free-nucleon
value by 10% for all multipole transitions, the calculation
reproduces the experimental muon capture rates to better than 10% accuracy.Comment: 19 pages, 5 figures, submitted to Phys. Rev.
Superallowed Fermi transitions in RPA with a relativistic point-coupling energy functional
The self-consistent random phase approximation (RPA) approach with the
residual interaction derived from a relativistic point-coupling energy
functional is applied to evaluate the isospin symmetry-breaking corrections
{\delta}c for the 0+\to0+ superallowed Fermi transitions. With these {\delta}c
values, together with the available experimental ft values and the improved
radiative corrections, the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM)
matrix is examined. Even with the consideration of uncertainty, the sum of
squared top-row elements has been shown to deviate from the unitarity condition
by 0.1% for all the employed relativistic energy functionals.Comment: 13 pages,2 figure
- …