research

Bursts in the Chaotic Trajectory Lifetimes Preceding the Controlled Periodic Motion

Abstract

The average lifetime (τ(H)\tau(H)) it takes for a randomly started trajectory to land in a small region (HH) on a chaotic attractor is studied. τ(H)\tau(H) is an important issue for controlling chaos. We point out that if the region HH is visited by a short periodic orbit, the lifetime τ(H)\tau(H) strongly deviates from the inverse of the naturally invariant measure contained within that region (μN(H)1\mu_N(H)^{-1}). We introduce the formula that relates τ(H)/μN(H)1\tau(H)/\mu_N(H)^{-1} to the expanding eigenvalue of the short periodic orbit visiting HH.Comment: Accepted for publication in Phys. Rev. E, 3 PS figure

    Similar works