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Bursts in the chaotic trajectory lifetimes preceding controlled periodic motion
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The average lifetimé~(H)] it takes for a randomly started trajectory to land in a small redlehon a
chaotic attractor is studied(H) is an important issue for controlling chaos. We point out that if the region
is visited by a short periodic orbit, the lifetimg(H) strongly deviates from the inverse of the naturally
invariant measure contained within that regigpy(H) 1]. We introduce the formula that relates
7(H)/ un(H) 1 to the expanding eigenvalue of the short periodic orbit visitihg

PACS numbeps): 05.45.Gg, 05.45.Ac

Controlling chaos by stabilizing one of the many unstableresult reported in Ref[9] and generalize it to one-
periodic orbits embedded within a given chaotic attractor isdimensional(1D) noninvertible and 2D invertible chaotic
attainable with small, time-dependent changes in an accesiaps. (From our considerations a conjecture follows that
sible system parametgt—3]. The idea is to observe a typi- Similar phenomena occur generally in chaotic systgms.
cal trajectory of the uncontrolled system for some transient It will be useful to define an auxiliary modified map
time, until it falls sufficiently close to the desired periodic [9,10]
orbit, and then to activate the control mechanism. An impor- _
tant issue related to the utilization of this method is the av- - o(¢"),
erage lifetime of chaotic transients that precede the con- =
trolled periodic motior{1,3-5.

Suppose that the uncontrolled chaotic attracforde-
scribes the asymptotic behavior of the dynamical syste
O:D—D, DCR™, also referred to as the original system.
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A typical trajectory of the map remains on the chaotic
attractor forever, while the same trajectory in the nip
P . . ~_eventually escapes through the reglenfrom now on also
Let £=0%(¢) be a point on a particular unstable periodic refered {0 as the hole. The average lifetime of chaotic tran-
orbit [6,7] that we wish to& stabilize. Furthermore, let the giants created by the mapis equal tor(H), which we have
vicinity of the orbitH=H(¢) be anm-dimensional ball of  defined above. Similar maps with a forbidden gap region
radiuse<1 centered at. The probability that a randomly arise in the context of communicating with chda4], and in
started trajectory does not realdhup to timet is ~e~ Y7 calculation of the topological entrogyt2].
The average lifetime= r(H) is strongly correlated with the To illustrate the concept of bursts, we consider two cha-
visitation frequency of typical trajectories to the regibin ~ otic 1D maps:(i) the asymmetric tent ma@(x)=kx, x
which is described in terms of the naturally invariant mea-<k;; O(x)=ky(1—x), x>k, ki,k,>0, k;*+k, =1,
sure (uy) contained withirH — un(H) [1,4,8. Obviously, if  and(ii) the sinusoidal ma@(x) = sinwx. Figure 1 displays
a certain region on a given chaotic attractor is visited moreas a function of the position of the holg [H=(£é—€,&
frequently by typical trajectories, the average lifetime it takes+ €)], for the two paradigmatic magsee also Ref9]). The
for an orbit to land in that region will be smaller. In the width of the hole is kept constankt£ 0.005). Both graphs
present paper we address the following question: What is thexhibit some common feature§) the overall behavior of
deviation of 7 from uy(H) ! as a function off and e? lifetimes follows thewy(H) ~* pattern;(ii) strong local de-
We will demonstrate the existence of bursts in the life-viations from thewy(H) " behavior—the bursts, observed
times, i.e., significant deviations affrom uy(H) 1, which  as leaps in the lifetimes, occur when the hole interval sweeps
appear when thél region encompasses a point on a shortacross a short periodic orbifji) the bursts are more signifi-
periodic orbit. In contrast to the overatt= uy(H) ~* behav-  cant if the length of the short periodic orbit is smaller.
ior, at these exceptional positions, the lifetimés consider- The explanation of the burst phenomenon requires the
ably prolonged as compared toy(H) ~*. As the length of ~comparison of two conceptsi) the conditionally invariant
the shortest cycle visitingl increases, the parameter of this measure{13-19 (also referred to as the measurg—the
deviation,S(H)=7/uy(H) %, decreases rapidly towards 1. concept associated with the modified system, &@ndthe
We will introduce a formula that relates the paramégd) ~ haturally invariant measurg?,3] of the original system. In
to the repelling propertiesexpanding eigenvalieof the order to define these measures, imagine that we cover the
shortest cycle withirH. Furthermore, we will demonstrate chaotic attractor with celll) from a very fine grid. Then we
that S(H) is independent of (for e<1). This is consistent randomly distribute a large numbeM) of points on the grid,
with the previously reported scaling- un(H) ! (see, e.g., and evolve them under the dynamisfor a long timeT.
Ref.[1,4]). Suppose that all initial points are colored blue, and that a
The present paper is motivated by the previous investigaPoint irretrievably changes color from blue to red immedi-
tion of the logistic map with a hol¢9]. In this paper we :ittely aft%r its first entrance into the regibh;l’hus, the point
present a theoretical explanation for the phenomenological;=0"(x,) at time T is blue if O'(xg)¢H for t
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FIG. 1. 7(£) (solid line) andun(H) ~* (dashed lingvs £ for (a)
the asymmetric tent mag[ *=0.39,k, *=0.61) andb) the sinmx .
map.H:(g—e,§+e), €=0.005. 0 0 5 1

e{0,1, ... T—1}, and red otherwise. In the limift—x, the FIG. 2. uc (solid ling) in comparison tquy (dashed lingfor the
fraction of points found in a given cell is just the natural sinmx map (e=0.005).(a) uc for the hole positioned og=0.66.
measure contained within that celliy(1)=N(1)/N; N The hole is not visited by a short periodic orbit. Note tlai(H)
=3,N1(1), where N¢(I)=b1(1)+r(1) denotes the total =#n(H). (b) uc for the hole located on the fixed point. Note that
number of points in a given cellat timeT [3]. The number ~ #c(H)<un(H). Inboth(a) and(b) uc and uy are globally iden-

of blue (red) points within a given cell at timeT is denoted tical, except at the first 3-4 images of the hole, which are plotted
asb(1) (r1(1)). The points that change color from blue to Underneath the graphs.

red under the action of the map, are those that would As an illustration, in Fig. 2 we display themeasure for

escape the attractor under the action of the Mapience, if th dified o fthg. dispiay ; to th

we were to evolve exactly the same initial conditions using € modined version ot Ine map six, In comparison to the
natural measure of the original map. For theneasure in

the mapM for the same timef, the number of surviving Fig. 2@), the hole has been positioned at an arbitrary point
points (blue point3 would be By=2,br(1) ~N exp(-1/7). buq[.not on the short eriodicporbit In this case, we ())/bzervé
In the limit N—oo, T—oo, the distribution of blue points that pe(H) = sp(H) iF:a YL d roximm tion
converges to the measure of the modified systgit3—15. tc(H)=pun(H), I.e.,un(H) " is a good approximatio
The fraction of blue points in a given cdllis simply thec for the I|f§t|me. In C(_)ntrast_, in Fig. (2) we d!splayuc for
measure contained within that celli(1) = br(1)/Br. the mod_lfled map simx, with the hole posmor_1ed on the
The blue point at any time>0, was certainly not in the fixed pomt.. We notice thapc(H) strongly deviates frpm .
hole H at time t—1. Therefore, M~1(1)=0"1(1)\H un(H). This case corresponds to the burst Iabelgd 1 in Fig.
_ ) - S 1(b). The overall agreement of the two measures is evident in
and bq(l)=br_;(M (1)), which divided by By both Fi d 7b). H ¢ locati b h
=B;_,exp(— 1/7) yields the well-known relation for the 0 'gS. %a) and 2b). However, at locations above the
measurd13—15 f|r_st few images of the hc_)lq«,cc takes the shape of a well,
with values that are considerably lower thag . When the
hole lies on the fixed poinfFig. 2(b)], the wells are just
above the hole itself. This results in a pronounced deviation
of 7=uc(H) ! from uy(H) ~1, which manifests as a burst.
Now we compare the two measures globally. A chaotic
repeller is a set of points on the attractor that never visit the
E — —In[1— pe(H)]=pe(H). 3) hole[14,15,1]. A trajectory that starts close to the repeller,
T does not escape the attractor for a long time. Therefore, the
blue points at a large tim& are located along the unstable
We emphasize the importance of this observation. The avemanifold of the repeller. Their distribution along this mani-
age lifetime it takes for a typical trajectory to reach the smalifold defines thee measurd14]. Thus, the natural measure is
region H on the attractor is an inverse of ttemeasure constructed from all the pointat timeT) on all the unstable
contained within that regiofwc(H) "), which may signifi- manifolds, whereas themeasure results only from points on
cantly differ from the inverse of the natural measureparts of these manifolds, the parts that extend from the re-
(un(H) ™). peller up to the hole. As we reduce the size of the e

pe()=eYuc(M1(1)). ()

By summing the equation above over all the celige obtain
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repeller and its unstable manifold grow. Consequently,  both the natural and the measure. For the 1D maps, the

gradually approacheg,, and for sufficiently small, the  number of disjoint intervals that make ttth preimage of

two measures are practically identicékor e=0, uc be-  P., grows exponentially with. Furthermore, they are scat-

comesuy [13-15). tered all over the attractor. Due to the chaoticity of the map
However, the deviation of the lifetime= uc(H) "1 from O, in both casedV ~'(P,) becomes more democratic with

un(H) 1 depends only on the values of the two measuresargerl, in the sense that the valeM ~'(P,)) reflects the

within the hole, and therefore is a local quantity. In order toglobal agreement between the two measures. Thus, insofar as

make a more accurate comparisorggf and uy, we intro- | is not small,a(M ~'(P,))=1.
duce the following definitions. Consider a $et_D such We conclude that fot=I(P,), larger than some critical
that uy(P)>0. We define the quantity value (call it I;), all of the three factors in Eq6) are =1
and thereforeuc(P.)=un(P,). This is consistent with the
a(P)=puc(P)/ un(P), (4  global agreement between the two measures. The critical

. ] ) o valuel. depends on the chaoticity of the original map. For
which describes the relation betwegr and uy within P. - example, we may takie to be the smallest integer for which
We also define the influenééP) of the hole on the se® as  g—Mle<c(.1 (e.g., for the sinfx) map this gived .~3—4).

WhenH maps toP, in just a few iterates, so thakl., a
pn(O'PY(PYNH) significant difference is observed betwegn-(P,) and
un(0~'PY(P)) ®) un(Po) _(this explains the wells in Fig.)2
Coming back to the average lifetimes, if the hole does not
I(P) denotes the smallest integer for which the sectionmap back to itself in just a few iterates, i.e., if the shortest
Ofl(P)(P)ﬂH becomes nonempty_ The natural invariantperiOdiC orbit withinH has a pel’iod Iargel’ thah:, then
measure withir0~'(®(P) is mapped tcP in I(P) iterates. #c(H)=un(H), or simply 7= uy(H) ~*. This explains the
The influence is just a fractio@<i(P)<1) of uy(P) that  overall behavior of lifetime¢see Fig. 1 On the other hand,
is mapped from the hole in the lagtP) time steps. if H encompasses a short periodic orfpieriod=1(H)<l),
Let PEEPE(Q)CD be anm-dimensional ball of radiug the two measures differ within the hole. Quantitatively, we

! ; ; ; I(H)/ 7
(the same radius as the hpleentered ak. We ask the fol- SUtEIS\ZIt_%ﬁE))E:H (Irl\]/lléﬂ(H()?) 'aI'E?s a:sg{j(ljtélrir:]ate 1 and
lowing question: Given a chaotic attractor and choosing thd"c KN '

hole region, what is the behavior ofa(P,)

i(P)=

; -1 -1
= uc(P)/ un(P,) as the position oP, on the attractor is 7=(1=1(H)) " “pun(H) @)
changed? ) o H _
By using Eq. (2) and the identity wy(P,) Althoughl(H) is small, the approximatioa(M ~'(")=1is
= (O~ X(P.)), we can write justified if ((M~'M)>1_, or simply, if the period of the
second shortest orbit withikl exceedd .. We have tested
a(P)=e""1-i(P))aM~'(P,), (6) relation(7) and consequently the approximations that lead to
it in a number of systems. We have compargtH) with
wherel=I(P,) (in what follows,|=I(P,)). pn(H) ™t by changing the position oH from “the most

Concerning the first factor in E¢6), note that the average exceptional” point, the fixed point, to longer cycles. In Fig.
lifetime typically scales liker~ 1/p(&) [Dp(é) denotes the 3 We display a test of Eq7) for the generalized baker's map
pointwise dimension & [1,4,3, whereas the minimal num- (_sgchl)?)efé[s(]j, f%r Zgé)‘ﬁ;?]SnS]g‘b(:é);'%;:[loé]“%_al”iﬁ
ber of iteratesl for which O~'(P.)NH#J scales likel s . ' p . =14p
~In(1/€) [4]. Therefore, exp(n)=1+1/7=1. =0.3). Recalling thati(H) decreases exponentially with

. X ; . I(H), and considering Eq(7), we see that the parameter
If the influence (P,) is small, the second factor in E) Ca 1 ) .
is =1. We argue thait(P.), the influence of the hole on the S(H)=(1—i(H)) ~ decreases rapidly towards 1 with the

regionP, decreases exponentially withFor the 2D original |tr)10reas|_e gi f(H)h(sIee F]igd.f% Equtatlr? n(@) is rO?USt agg cl?n

maps,0~'(P,) is a narrow region that is stretched along the fe atﬁp ISD or oesto_l 'tﬁrer? IS apes, as or;g- ; h id

stable direction and squeezed along the unstabl¢4n&he (for the mapswe tailor the hole as a rectangle with sides

. . - . i of length e parallel to the stable and unstable manifold seg-

intersection of0 ™ (P,) with the holeH is roughly a rect- ments, and center it on a short periodic orbit, then

angle of lengthe and width e exp(—X\4l). For the 1D maps, ' '

O~ '(P)NH is an interval of width~ e exp(—\4l). In both P 4

cases)\, denotes the positive Lyapunov exponent obtained =(1=A,7) Tun(H) 8

for typical initial conditions on the attractor. Since the natu-

ral measure is concentrated along the unstable manifold$, denotes the magnitude of the expanding eigenvalue of

[7,3], we can relateuy(O~'(P.)NH)~exp(=\,l). Thus, that orbit. Equation(8) also applies to 1D maps. Note that

due to the chaoticity of the ma® we obtaini(P,) the approximatior'n(H)zAJ1 assumes that the natural mea-

~exp(=Nql). sure is smooth along the unstable direction witkin We
Concerning the third factor in E@6), we consider the set observe thatr/uy(H) ! is independent ok. This is in ac-

M~'(P,) and the value(M ~'(P,)) in dependence df For  cordance with the statement that the lifetimecales withe

the 2D maps, the sédl ~'(P,.)=0"'(P)\H is stretched ex- just like uyn(H) 1 [1,4].

ponentially fast with increasingalong the stable manifolds, Let us consider an application of E@). Suppose that we

and thus crosses many of the unstable manifolds that carmyish to control a chaotic system around an unstable fixed
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— tion frequency to thee vicinity of the fixed point, i.e.,

MN(HEHE(E)). e is determined by the maximally allowed
deviation of the control parameter from its nominal value
[1,2]. The question of interest is how many iterates are
needed on the average)( before a chaotic trajectory enters
the regionH, when the control becomes attainapld. The
prediction given byuy(H) ! is an underestimate, since we
are on the fixed point. For example, if the underlying dynam-
ics of the system is the asymmetric tent n{ath the same
parameters as in Fig.)land if H=(0.621118Q...
—0.002, 0.621 11801 - +0.002), the estimate for the life-
time un(H) ™ gives 250 iterates. On the other hand, the
—o numerically calculated lifetime is=627 iterates, which is
more than twice as long. The lifetime obtained from formula

25 r

b

T (H) ™

15

—0= (8) is 641 iterates, which is very close to the numerically
] . . . x calculated lifetime. Thus, E8) can be utilized to easily and
1 2 3 4 accurately obtainr from an observation of the free running
I(H) system.

In summary, we have studied the average lifetimg i€
FIG. 3. Numerically evaluated parametetuy(H) * for the  takes for a randomly started orbit to land in a small region
Henon map(diamonds and the Baker mafrircles in comparison  (H) on a chaotic attractor. That problem was introduced in
to (1—i(H))"* (horizontal bars The hole of radius=0.005is  Ref [1] as an important issue for controlling chaos. Our
centered on the shortest periodic offperiod=1(H)] visiting H. main result is that if a low-period unstable periodic orbit
visits the regiorH, then the lifetimer significantly deviates
point. In order to obtain the position of the fixed point, its from the inverse of the natural measure contained wittin
unstable eigenvalue, and other information required for théun(H) ~*). The parameter of this deviation/uy(H) ™%, is
control, an observation of the free running system is needed function of the expanding eigenvalue of that low-period
[1,2]. From this observation, we can also evaluate the visitaerbit.
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