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Bursts in the chaotic trajectory lifetimes preceding controlled periodic motion

V. Paar and H. Buljan
Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia

~Received 9 May 2000!

The average lifetime@t~H!# it takes for a randomly started trajectory to land in a small region~H! on a
chaotic attractor is studied.t(H) is an important issue for controlling chaos. We point out that if the regionH
is visited by a short periodic orbit, the lifetimet(H) strongly deviates from the inverse of the naturally
invariant measure contained within that region@mN(H)21#. We introduce the formula that relates
t(H)/mN(H)21 to the expanding eigenvalue of the short periodic orbit visitingH.

PACS number~s!: 05.45.Gg, 05.45.Ac
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Controlling chaos by stabilizing one of the many unsta
periodic orbits embedded within a given chaotic attracto
attainable with small, time-dependent changes in an ac
sible system parameter@1–3#. The idea is to observe a typ
cal trajectory of the uncontrolled system for some transi
time, until it falls sufficiently close to the desired period
orbit, and then to activate the control mechanism. An imp
tant issue related to the utilization of this method is the
erage lifetime of chaotic transients that precede the c
trolled periodic motion@1,3–5#.

Suppose that the uncontrolled chaotic attractorA de-
scribes the asymptotic behavior of the dynamical sys
O:D→D, D#Rm, also referred to as the original system
Let jW5Ok(jW ) be a point on a particular unstable period
orbit @6,7# that we wish to stabilize. Furthermore, let th
vicinity of the orbit H[He(jW ) be anm-dimensional ball of
radiuse!1 centered atjW . The probability that a randomly
started trajectory does not reachH up to timet is ;e2t/t(H).
The average lifetimet[t(H) is strongly correlated with the
visitation frequency of typical trajectories to the regionH,
which is described in terms of the naturally invariant me
sure (mN) contained withinH2mN(H) @1,4,8#. Obviously, if
a certain region on a given chaotic attractor is visited m
frequently by typical trajectories, the average lifetime it tak
for an orbit to land in that region will be smaller. In th
present paper we address the following question: What is
deviation oft from mN(H)21 as a function ofjW ande?

We will demonstrate the existence of bursts in the li
times, i.e., significant deviations oft from mN(H)21, which
appear when theH region encompasses a point on a sh
periodic orbit. In contrast to the overallt.mN(H)21 behav-
ior, at these exceptional positions, the lifetimet is consider-
ably prolonged as compared tomN(H)21. As the length of
the shortest cycle visitingH increases, the parameter of th
deviation,S(H)[t/mN(H)21, decreases rapidly towards 1
We will introduce a formula that relates the parameterS(H)
to the repelling properties~expanding eigenvalue! of the
shortest cycle withinH. Furthermore, we will demonstrat
that S(H) is independent ofe ~for e!1). This is consistent
with the previously reported scalingt;mN(H)21 ~see, e.g.,
Ref. @1,4#!.

The present paper is motivated by the previous invest
tion of the logistic map with a hole@9#. In this paper we
present a theoretical explanation for the phenomenolog
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result reported in Ref.@9# and generalize it to one
dimensional~1D! noninvertible and 2D invertible chaoti
maps. ~From our considerations a conjecture follows th
similar phenomena occur generally in chaotic systems.!

It will be useful to define an auxiliary modified ma
@9,10#

M ~jW !5H O~jW8!, jW8PD\H

outside of the basin ofA, jW8PH.
~1!

A typical trajectory of the mapO remains on the chaotic
attractor forever, while the same trajectory in the mapM
eventually escapes through the regionH, from now on also
referred to as the hole. The average lifetime of chaotic tr
sients created by the mapM is equal tot(H), which we have
defined above. Similar maps with a forbidden gap reg
arise in the context of communicating with chaos@11#, and in
calculation of the topological entropy@12#.

To illustrate the concept of bursts, we consider two ch
otic 1D maps:~i! the asymmetric tent mapO(x)5k1x, x
,k1 ; O(x)5k2(12x), x.k1 , k1 ,k2.0, k1

211k2
2151,

and~ii ! the sinusoidal mapO(x)5sinpx. Figure 1 displayst
as a function of the position of the holej @H5(j2e,j
1e)#, for the two paradigmatic maps~see also Ref.@9#!. The
width of the hole is kept constant (e50.005). Both graphs
exhibit some common features:~i! the overall behavior of
lifetimes follows themN(H)21 pattern;~ii ! strong local de-
viations from themN(H)21 behavior—the bursts, observe
as leaps in the lifetimes, occur when the hole interval swe
across a short periodic orbit;~iii ! the bursts are more signifi
cant if the length of the short periodic orbit is smaller.

The explanation of the burst phenomenon requires
comparison of two concepts:~i! the conditionally invariant
measure@13–15# ~also referred to as thec measure!—the
concept associated with the modified system, and~ii ! the
naturally invariant measure@7,3# of the original system. In
order to define these measures, imagine that we cover
chaotic attractor with cells~I! from a very fine grid. Then we
randomly distribute a large number~N! of points on the grid,
and evolve them under the dynamicsO for a long timeT.
Suppose that all initial points are colored blue, and tha
point irretrievably changes color from blue to red immed
ately after its first entrance into the regionH. Thus, the point
xWT5OT(xW0) at time T is blue if Ot(xW0)¹H for t
4869 ©2000 The American Physical Society
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4870 PRE 62V. PAAR AND H. BULJAN
P$0,1, . . . ,T21%, and red otherwise. In the limitT→`, the
fraction of points found in a given cellI, is just the natural
measure contained within that cell:mN(I )5NT(I )/N; N
5( INT(I ), where NT(I )5bT(I )1r T(I ) denotes the tota
number of points in a given cellI at timeT @3#. The number
of blue ~red! points within a given cellI at timeT is denoted
asbT(I ) „r T(I )…. The points that change color from blue
red under the action of the mapO, are those that would
escape the attractor under the action of the mapM. Hence, if
we were to evolve exactly the same initial conditions us
the mapM for the same timeT, the number of surviving
points ~blue points! would be BT5( IbT(I );N exp(2T/t).
In the limit N→`, T→`, the distribution of blue points
converges to thec measure of the modified system@13–15#.
The fraction of blue points in a given cellI is simply thec
measure contained within that cell:mC(I )5bT(I )/BT .

The blue point at any timet.0, was certainly not in the
hole H at time t21. Therefore, M 21(I )[O21(I )\H
and bT(I )5bT21„M

21(I )…, which divided by BT
5BT21exp„21/t… yields the well-known relation for thec
measure@13–15#

mC~ I !5e1/tmC„M
21~ I !…. ~2!

By summing the equation above over all the cellsI we obtain

1

t
52 ln@12mC~H !#.mC~H !. ~3!

We emphasize the importance of this observation. The a
age lifetime it takes for a typical trajectory to reach the sm
region H on the attractor is an inverse of thec measure
contained within that region„mC(H)21

…, which may signifi-
cantly differ from the inverse of the natural measu
„mN(H)21

….

FIG. 1. t(j) ~solid line! andmN(H)21 ~dashed line! vs j for ~a!
the asymmetric tent map (k1

2150.39,k2
2150.61) and~b! the sinpx

map.H5(j2e,j1e), e50.005.
g

r-
ll

As an illustration, in Fig. 2 we display thec measure for
the modified version of the map sinpx, in comparison to the
natural measure of the original map. For thec measure in
Fig. 2~a!, the hole has been positioned at an arbitrary po
but not on the short periodic orbit. In this case, we obse
thatmC(H).mN(H), i.e.,mN(H)21 is a good approximation
for the lifetime. In contrast, in Fig. 2~b! we displaymC for
the modified map sinpx, with the hole positioned on the
fixed point. We notice thatmC(H) strongly deviates from
mN(H). This case corresponds to the burst labeled 1 in F
1~b!. The overall agreement of the two measures is eviden
both Figs. 2~a! and 2~b!. However, at locations above th
first few images of the hole,mC takes the shape of a wel
with values that are considerably lower thanmN . When the
hole lies on the fixed point@Fig. 2~b!#, the wells are just
above the hole itself. This results in a pronounced deviat
of t5mC(H)21 from mN(H)21, which manifests as a burs

Now we compare the two measures globally. A chao
repeller is a set of points on the attractor that never visit
hole @14,15,11#. A trajectory that starts close to the repelle
does not escape the attractor for a long time. Therefore,
blue points at a large timeT are located along the unstab
manifold of the repeller. Their distribution along this man
fold defines thec measure@14#. Thus, the natural measure
constructed from all the points~at timeT) on all the unstable
manifolds, whereas thec measure results only from points o
parts of these manifolds, the parts that extend from the
peller up to the hole. As we reduce the size of the holee, the

FIG. 2. mC ~solid line! in comparison tomN ~dashed line! for the
sinpx map (e50.005). ~a! mC for the hole positioned onj50.66.
The hole is not visited by a short periodic orbit. Note thatmC(H)
.mN(H). ~b! mC for the hole located on the fixed point. Note th
mC(H),mN(H). In both ~a! and~b! mC andmN are globally iden-
tical, except at the first 3-4 images of the hole, which are plot
underneath the graphs.



re
to

io
n

th

e

-

e

he

e
tu
ol

t

,
ar

e

t-
ap
h

ar as

l

tical
or
h

not
est

,

e

to

g.
p

h
r
e

es
g-

of
t

a-

xed

PRE 62 4871BURSTS IN THE CHAOTIC TRAJECTORY LIFETIMES . . .
repeller and its unstable manifold grow. Consequently,mC
gradually approachesmN , and for sufficiently smalle, the
two measures are practically identical.~For e50, mC be-
comesmN @13–15#!.

However, the deviation of the lifetimet5mC(H)21 from
mN(H)21 depends only on the values of the two measu
within the hole, and therefore is a local quantity. In order
make a more accurate comparison ofmC andmN , we intro-
duce the following definitions. Consider a setP,D such
that mN(P).0. We define the quantity

a~P!5mC~P!/mN~P!, ~4!

which describes the relation betweenmC and mN within P.
We also define the influencei (P) of the hole on the setP as

i ~P!5
mN„O

2 l (P)~P!ùH…

mN„O
2 l (P)~P!…

. ~5!

l (P) denotes the smallest integer for which the sect
O2 l (P)(P)ùH becomes nonempty. The natural invaria
measure withinO2 l (P)(P) is mapped toP in l (P) iterates.
The influence is just a fraction„0< i (P)<1… of mN(P) that
is mapped from the hole in the lastl (P) time steps.

Let Pe[Pe(xW ),D be anm-dimensional ball of radiuse
~the same radius as the hole! centered atxW . We ask the fol-
lowing question: Given a chaotic attractor and choosing
hole region, what is the behavior of a(Pe)
5mC(Pe)/mN(Pe) as the position ofPe on the attractor is
changed?

By using Eq. ~2! and the identity mN(Pe)
5mN„O

21(Pe)…, we can write

a~Pe!5el /t
„12 i ~Pe!…a„M

2 l~Pe!…, ~6!

wherel[ l (Pe) ~in what follows, l[ l (Pe)).
Concerning the first factor in Eq.~6!, note that the averag

lifetime typically scales liket;1/eDp(jW ) @Dp(jW ) denotes the
pointwise dimension atj¢] @1,4,3#, whereas the minimal num
ber of iteratesl for which O2 l(Pe)ùHÞB scales likel
; ln(1/e) @4#. Therefore, exp(l/t).11l/t.1.

If the influencei (Pe) is small, the second factor in Eq.~6!
is .1. We argue thati (Pe), the influence of the hole on th
regionPe decreases exponentially withl. For the 2D original
maps,O2 l(Pe) is a narrow region that is stretched along t
stable direction and squeezed along the unstable one@4#. The
intersection ofO2 l(Pe) with the holeH is roughly a rect-
angle of lengthe and widthe exp(2l1l). For the 1D maps,
O2 l(Pe)ùH is an interval of width;e exp(2l1l). In both
cases,l1 denotes the positive Lyapunov exponent obtain
for typical initial conditions on the attractor. Since the na
ral measure is concentrated along the unstable manif
@7,3#, we can relatemN„O

2 l(Pe)ùH…;exp(2l1l). Thus,
due to the chaoticity of the mapO we obtain i (Pe)
;exp(2l1l).

Concerning the third factor in Eq.~6!, we consider the se
M 2 l(Pe) and the valuea„M 2 l(Pe)… in dependence ofl. For
the 2D maps, the setM 2 l(Pe)[O2 l(Pe)\H is stretched ex-
ponentially fast with increasingl along the stable manifolds
and thus crosses many of the unstable manifolds that c
s
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t

e
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both the natural and thec measure. For the 1D maps, th
number of disjoint intervals that make thel th preimage of
Pe , grows exponentially withl. Furthermore, they are sca
tered all over the attractor. Due to the chaoticity of the m
O, in both casesM 2 l(Pe) becomes more democratic wit
larger l, in the sense that the valuea„M 2 l(Pe)… reflects the
global agreement between the two measures. Thus, insof
l is not small,a„M 2 l(Pe)….1.

We conclude that forl[ l (Pe), larger than some critica
value ~call it l c), all of the three factors in Eq.~6! are .1
and thereforemC(Pe).mN(Pe). This is consistent with the
global agreement between the two measures. The cri
value l c depends on the chaoticity of the original map. F
example, we may takel c to be the smallest integer for whic
e2l1l c,0.1 ~e.g., for the sin(px) map this givesl c;324).
When H maps toPe in just a few iterates, so thatl , l c , a
significant difference is observed betweenmC(Pe) and
mN(Pe) ~this explains the wells in Fig. 2!.

Coming back to the average lifetimes, if the hole does
map back to itself in just a few iterates, i.e., if the short
periodic orbit within H has a period larger thanl c , then
mC(H).mN(H), or simply t.mN(H)21. This explains the
overall behavior of lifetimes~see Fig. 1!. On the other hand
if H encompasses a short periodic orbit~period[ l (H), l c),
the two measures differ within the hole. Quantitatively, w
substitutePe→H in Eq. ~6! and approximateel (H)/t.1 and
mC(M 2 l (H)).mN(M 2 l (H)). This results in

t.„12 i ~H !…21mN~H !21. ~7!

Although l (H) is small, the approximationa(M 2 l (H)).1 is
justified if l (M 2 l (H)). l c , or simply, if the period of the
second shortest orbit withinH exceedsl c . We have tested
relation~7! and consequently the approximations that lead
it in a number of systems. We have comparedt(H) with
mN(H)21 by changing the position ofH from ‘‘the most
exceptional’’ point, the fixed point, to longer cycles. In Fi
3 we display a test of Eq.~7! for the generalized baker’s ma
~see Ref.@3#, p. 75, la50.35,lb50.40,a50.40, andb
50.60), and for the He´non map ~see Ref.@16# a51.4,b
50.3). Recalling thati (H) decreases exponentially wit
l (H), and considering Eq.~7!, we see that the paramete
S(H)5„12 i (H)…21 decreases rapidly towards 1 with th
increase ofl (H) ~see Fig. 3!. Equation~7! is robust and can
be applied for holes of different shapes, as long ast@1. If
~for the 2D maps! we tailor the hole as a rectangle with sid
of lengthe parallel to the stable and unstable manifold se
ments, and center it on a short periodic orbit, then

t.~12Lu
21!21mN~H !21. ~8!

Lu denotes the magnitude of the expanding eigenvalue
that orbit. Equation~8! also applies to 1D maps. Note tha
the approximationi (H).Lu

21 assumes that the natural me
sure is smooth along the unstable direction withinH. We
observe thatt/mN(H)21 is independent ofe. This is in ac-
cordance with the statement that the lifetimet scales withe
just like mN(H)21 @1,4#.

Let us consider an application of Eq.~8!. Suppose that we
wish to control a chaotic system around an unstable fi
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4872 PRE 62V. PAAR AND H. BULJAN
point. In order to obtain the position of the fixed point,
unstable eigenvalue, and other information required for
control, an observation of the free running system is nee
@1,2#. From this observation, we can also evaluate the vis

FIG. 3. Numerically evaluated parametert/mN(H)21 for the
Henon map~diamonds! and the Baker map~circles! in comparison
to „12 i (H)…21 ~horizontal bars!. The hole of radiuse50.005 is
centered on the shortest periodic orbit@period5 l (H)# visiting H.
v

d

d

e
d
-

tion frequency to thee vicinity of the fixed point, i.e.,

mN„H[He(jW )…. e is determined by the maximally allowe
deviation of the control parameter from its nominal val
@1,2#. The question of interest is how many iterates a
needed on the average (t), before a chaotic trajectory enter
the regionH, when the control becomes attainable@1#. The
prediction given bymN(H)21 is an underestimate, since w
are on the fixed point. For example, if the underlying dyna
ics of the system is the asymmetric tent map~with the same
parameters as in Fig. 1!, and if H5(0.621 118 01 . . .
20.002, 0.621 118 01•••10.002), the estimate for the life
time mN(H)21 gives 250 iterates. On the other hand, t
numerically calculated lifetime is.627 iterates, which is
more than twice as long. The lifetime obtained from formu
~8! is 641 iterates, which is very close to the numerica
calculated lifetime. Thus, Eq.~8! can be utilized to easily and
accurately obtaint from an observation of the free runnin
system.

In summary, we have studied the average lifetime (t) it
takes for a randomly started orbit to land in a small reg
~H! on a chaotic attractor. That problem was introduced
Ref. @1# as an important issue for controlling chaos. O
main result is that if a low-period unstable periodic orb
visits the regionH, then the lifetimet significantly deviates
from the inverse of the natural measure contained withinH
„mN(H)21

…. The parameter of this deviation,t/mN(H)21, is
a function of the expanding eigenvalue of that low-peri
orbit.
s.
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@12# P. Cvitanović, G.H. Gunaratne, and I. Procaccia, Phys. Rev
38, 1503~1988!.

@13# G. Pianigiani and J.A. Yorke, Trans. Am. Math. Soc.252, 351
~1979!; G. Pianigiani, J. Math. Anal. Appl.82, 75 ~1981!.

@14# T. Tel, in Directions in Chaos, edited by Hao Bai-lin~World
Scientific, Singapore, 1990!, Vol. 3, p. 149.

@15# T. Tel, Phys. Rev. A36, 1502 ~1987!; P. Szepfalusy and T.
Tel, ibid. 34, 2520~1986!.
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