836 research outputs found

    PRIORITIZING PARCELS FOR CONSERVATION EASEMENTS USING LEAST-COST PATH ANALYSES OF LAND OWNERSHIP: CASE STUDY WITHIN THEORIZED GRIZZLY BEAR MIGRATION CORRIDORS OF WESTERN MONTANA

    Get PDF
    As the world’s human population has grown and converted large natural habitats to human dominated landscapes, the planet’s biodiversity has decreased. To combat the loss of biodiversity from human development, many conservation professionals champion the concept of conservation corridors between intact habitats. Conservation corridors, made up of protected land, serve as a connection for wildlife populations to intermix genetics and, subsequently, help reduce the risk of extinction. The ideal geographic location of corridors is generally determined through geographic information system modeling using biophysical conditions and theorized animal movement. However, the resulting corridors are often expansive and protecting entire corridors is usually impossible. Therefore, determining where conservation actions, such as placing a conservation easement on a private parcel, have the most opportunity for connecting landscapes is key to maximizing benefits with limited resources. This study examines how public land can be considered as protected habitat, due to federal mandates, and serve as a facilitating factor for establishing conservation corridors with conservation easements on private parcels. It utilizes least cost pathway analyses within theorized grizzly bear migration corridors of western Montana to show the potential for conservation easements to provide connectivity of protected lands within conservation corridors. The case study compares differing cost values for varying land ownership types to aid in corridor implementation planning. From the analysis, the resulting least cost pathways show promise for identifying individual private parcels, and therefore specific areas, within the larger wildlife corridor for concentrated conservation action. The approach shows promise for land trusts and other organizations working to place conservation easements on parcels with the highest conservation opportunity to connect large intact landscapes

    Insights into the role of silicon and graphite in the electrochemical performance of silicon/graphite blended electrodes with a multi-material porous electrode model

    Get PDF
    Silicon/graphite blended electrodes are promising candidates to replace graphite in lithium ion batteries, benefiting from the high capacity of silicon and the good structural stability of carbon. Models have proven essential to understand and optimise batteries with new materials. However, most previous models treat silicon/graphite blends as a single “lumped” material, offering limited understanding of the behaviors of the individual materials and thus limited design capability. Here, we present a multi-material model for silicon/graphite electrodes with detailed descriptions of the contributions of the individual active materials. The model shows that silicon introduces voltage hysteresis to silicon/graphite electrodes and consequently a “plateau shift” during delithiation of the electrodes. There will also be competition between the silicon and graphite lithiation reactions depending on silicon/graphite ratio. A dimensionless competing factor is derived to quantify the competition between the two active materials. This is demonstrated to be a useful indicator for active operating regions for each material and we demonstrate how it can be used to design cycling protocols for mitigating electrode degradation. The multi-material electrode model can be readily implemented into full-cell models and coupled with other physics to guide further development of lithium ion batteries with silicon-based electrodes

    Regularized MPC for power management of hybrid energy storage systems with applications in electric vehicles

    Get PDF
    This paper examines the application of Regularized Model Predictive Control (RMPC) for Power Management (PM) of Hybrid Energy Storage Systems (HESSs). To illustrate, we apply the idea to the PM problem of a battery-supercapacitors (SCs) powertrain to reduce battery degradation in Electric Vehicles (EVs). While the application of Quadratic MPC (QMPC) in PM of HESS is not new, the idea to examine RMPC here is motivated by its capabilities to prioritize actuator actions and efficiently allocate control effort, as advocated by recent works in the control and MPC literature. Thorough simulations have been run over standard urban test drive cycles. It is found out that QMPC and RMPC, compared to rule-based PM strategies, could reduce the battery degradation over 70%. It is also shown that RMPC can slightly outperform QMPC in reducing battery degradation. Moreover, RMPC, compared to QMPC, could potentially extend the range of that SCs can be used, thus exploiting the degree of freedom of the powertrain to a larger extent. We also make some discussions on the feasibility issues and tuning challenges that RMPC faces, among others

    Strain induced electrochemical behaviors of ionic liquid electrolytes in an electrochemical double layer capacitor: Insights from molecular dynamics simulations.

    Get PDF
    Electrochemical Double Layer Capacitors (EDLCs) with ionic liquid electrolytes outperform conventional ones using aqueous and organic electrolytes in energy density and safety. However, understanding the electrochemical behaviors of ionic liquid electrolytes under compressive/tensile strain is essential for the design of flexible EDLCs as well as normal EDLCs, which are subject to external forces during assembly. Despite many experimental studies, the compression/stretching effects on the performance of ionic liquid EDLCs remain inconclusive and controversial. In addition, there is hardly any evidence of prior theoretical work done in this area, which makes the literature on this topic scarce. Herein, for the first time, we developed an atomistic model to study the processes underlying the electrochemical behaviors of ionic liquids in an EDLC under strain. Constant potential non-equilibrium molecular dynamics simulations are conducted for EMIM BF4 placed between two graphene walls as electrodes. Compared to zero strain, low compression of the EDLC resulted in compromised performance as the electrode charge density dropped by 29%, and the performance reduction deteriorated significantly with a further increase in compression. In contrast, stretching is found to enhance the performance by increasing the charge storage in the electrodes by 7%. The performance changes with compression and stretching are due to changes in the double-layer structure. In addition, an increase in the value of the applied potential during the application of strain leads to capacity retention with compression revealed by the newly performed simulations. [Abstract copyright: © 2023 Author(s). Published under an exclusive license by AIP Publishing.

    Force generation examined by laser temperature-jumps in shortening and lengthening mammalian (rabbit psoas) muscle fibres

    Get PDF
    We examined the tension change induced by a rapid temperature jump (T-jump) in shortening and lengthening active muscle fibres. Experiments were done on segments of permeabilized single fibres (length (L0) ∼2 mm, sarcomere length 2.5 μm) from rabbit psoas muscle; [MgATP] was 4.6 mm, pH 7.1, ionic strength 200 mm and temperature ∼9°C. A fibre was maximally Ca2+-activated in the isometric state and a ∼3°C, rapid (< 0.2 ms), laser T-jump applied when the tension was approximately steady in the isometric state, or during ramp shortening or ramp lengthening at a limited range of velocities (0–0.2 L0 s−1). The tension increased to 2- to 3 × P0 (isometric force) during ramp lengthening at velocities > 0.05 L0 s−1, whereas the tension decreased to about < 0.5 × P0 during shortening at 0.1–0.2 L0 s−1; the unloaded shortening velocity was ∼1 L0 s−1 and the curvature of the force–shortening velocity relation was high (a/P0 ratio from Hill's equation of ∼0.05). In isometric state, a T-jump induced a tension rise of 15–20% to a new steady state; by curve fitting, the tension rise could be resolved into a fast (phase 2b, 40–50 s−1) and a slow (phase 3, 5–10 s−1) exponential component (as previously reported). During steady lengthening, a T-jump induced a small instantaneous drop in tension, followed by recovery, so that the final tension recorded with and without a T-jump was not significantly different; thus, a T-jump did not lead to a net increase of tension. During steady shortening, the T-jump induced a pronounced tension rise and both its amplitude and the rate (from a single exponential fit) increased with shortening velocity; at 0.1–0.2 L0 s−1, the extent of fibre shortening during the T-jump tension rise was estimated to be ∼1.2% L0 and it was shorter at lower velocities. At a given shortening velocity and over the temperature range of 8–30°C, the rate of T-jump tension rise increased with warming (Q10 ≈ 2.7), similar to phase 2b (endothermic force generation) in isometric muscle. Results are discussed in relation to the previous findings in isometric muscle fibres which showed that a T-jump promotes an early step in the crossbridge–ATPase cycle that generates force. In general, the finding that the T-jump effect on active muscle tension is pronounced during shortening, but is depressed/inhibited during lengthening, is consistent with the expectations from the Fenn effect that energy liberation (and acto-myosin ATPase rate) in muscle are increased during shortening and depressed/inhibited during lengthening

    A user-friendly lithium battery simulator based on open-source CFD

    Get PDF
    The growing use of lithium-ion batteries (LIBs) for automotive and stationary storage applications has put increasingly stringent requirements on battery thermal management and battery safety. An open-source platform that can bridge battery electrochemical models and computational fluid dynamics (CFD) can be of great benefit for designing advanced battery thermal management systems and safety countermeasures by allowing the simulation and prediction of battery responses to various thermofluidic environments and thermal boundaries. Here we develop a user-friendly battery simulator based on the open-source CFD code OpenFOAM. The simulator contains the in-house solvers for the two mostly used physics-based battery models, the single particle model, and the pseudo-two-dimensional model. GUIs are also developed based on Qt for simulation automation and ease of use. To demonstrate the functionality of the developed simulator, the electrochemical performance and internal states of half LIB cells and full LIB cells with different chemistries at different operating conditions are simulated. The obtained results agree well with other existing battery simulators. Due to its native integration with OpenFOAM, the new battery simulator is readily extendable to incorporate various CFD models and other physics to meet the simulation needs of thermal management and safety design for LIBs

    An atomic and molecular database for analysis of submillimetre line observations

    Full text link
    Atomic and molecular data for the transitions of a number of astrophysically interesting species are summarized, including energy levels, statistical weights, Einstein A-coefficients and collisional rate coefficients. Available collisional data from quantum chemical calculations and experiments are extrapolated to higher energies. These data, which are made publically available through the WWW at http://www.strw.leidenuniv.nl/~moldata, are essential input for non-LTE line radiative transfer programs. An online version of a computer program for performing statistical equilibrium calculations is also made available as part of the database. Comparisons of calculated emission lines using different sets of collisional rate coefficients are presented. This database should form an important tool in analyzing observations from current and future (sub)millimetre and infrared telescopes.Comment: Accepted for publication in A&A, 14 pages, 5 figure

    First measurement and shell model interpretation of the g factor of the 21+ state in self-conjugate radioactive 44Ti

    Get PDF
    AbstractThe g factor of the 21+ state in radioactive 44Ti has been measured for the first time with the technique of α transfer to 40Ca beams in inverse kinematics in combination with transient magnetic fields, yielding the value, g(21+)=+0.52(15). In addition, the lifetimes of the 21+, τ=3.97(28) ps, and the 41+ states, τ=0.65(6) ps, were redetermined with higher precision using the Doppler shift attenuation method. The deduced B(E2)'s and the g factor were well explained by a full fp shell model calculation using the FPD6 effective NN interaction. The g factor can also be accounted for by a simple rotational model (g=Z/A). However, if one also considers the B(E2)'s and the E(41+)/E(21+) ratios, then an imperfect vibrator picture gives better agreement with the data

    Discovery of interstellar mercapto radicals (SH) with the GREAT instrument on SOFIA

    Full text link
    We report the first detection of interstellar mercapto radicals, obtained along the sight-line to the submillimeter continuum source W49N. We have used the GREAT instrument on SOFIA to observe the 1383 GHz Doublet Pi 3/2 J = 5/2 - 3/2 lambda doublet in the upper sideband of the L1 receiver. The resultant spectrum reveals SH absorption in material local to W49N, as well as in foreground gas, unassociated with W49N, that is located along the sight-line. For the foreground material at velocities in the range 37 - 44 km/s with respect to the local standard of rest, we infer a total SH column density ~ 2.6 E+12 cm-2, corresponding to an abundance of ~ 7 E-9 relative to H2, and yielding an SH/H2S abundance ratio ~ 0.13. The observed SH/H2S abundance ratio is much smaller than that predicted by standard models for the production of SH and H2S in turbulent dissipation regions and shocks, and suggests that the endothermic neutral-neutral reaction SH + H2 -> H2S + H must be enhanced along with the ion-neutral reactions believed to produce CH+ and SH+ in diffuse molecular clouds.Comment: Accepted for publication in Astronomy and Astrophysics (SOFIA/GREAT special issue
    corecore