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As the world’s human population has grown and converted large 
natural habitats to human dominated landscapes, the planet’s biodiversity 
has decreased. To combat the loss of biodiversity from human 
development, many conservation professionals champion the concept of 
conservation corridors between intact habitats. Conservation corridors, 
made up of protected land, serve as a connection for wildlife populations 
to intermix genetics and, subsequently, help reduce the risk of extinction. 
The ideal geographic location of corridors is generally determined through 
geographic information system modeling using biophysical conditions and 
theorized animal movement. However, the resulting corridors are often 
expansive and protecting entire corridors is usually impossible. Therefore, 
determining where conservation actions, such as placing a conservation 
easement on a private parcel, have the most opportunity for connecting 
landscapes is key to maximizing benefits with limited resources.  

 
This study examines how public land can be considered as 

protected habitat, due to federal mandates, and serve as a facilitating 
factor for establishing conservation corridors with conservation easements 
on private parcels. It utilizes least cost pathway analyses within theorized 
grizzly bear migration corridors of western Montana to show the potential 
for conservation easements to provide connectivity of protected lands 
within conservation corridors. The case study compares differing cost 
values for varying land ownership types to aid in corridor implementation 
planning. From the analysis, the resulting least cost pathways show 
promise for identifying individual private parcels, and therefore specific 
areas, within the larger wildlife corridor for concentrated conservation 
action. The approach shows promise for land trusts and other 
organizations working to place conservation easements on parcels with the 
highest conservation opportunity to connect large intact landscapes. 
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Introduction 

Protecting wildlife corridors has become a frequently cited solution to the world’s 

decreasing biodiversity (Mateo-Sánchez, Cushman, and Saura 2014). Corridors are 

intact habitat through which animals can move in marginalized landscapes between 

larger expansive habitats. Fully protected wildlife corridors are called conservation 

corridors and are a collection of parcels with various ownership types (Iftekhar and 

Tisdell 2014). The creation of fully protected conservation corridors can be 

accomplished by multiple means of land-use planning related actions, ranging from 

policy creation to wholesale acquisition (Rissman et al. 2007). A middle-ground 

alternative to these two approaches is the placement of conservation easements on 

private property. Easements are a legally binding agreement between a landowner and 

an external party, often a land trust or similar conservation organization, that restricts 

development on the impacted parcel. When compared to land use policy, conservation 

easements are often more attainable then largescale policy creation and are less costly 

than complete acquisition, making them an ideal tool for corridor construction (Farmer 

et al. 2011).  

Although conservation easements are a practical and realistic protection option, 

they still require resources to implement, such as staff time from the easement holding 

organization and money for their purchase. Therefore, when considering an entire 

corridor for protection the ability to prioritize individual parcels or regions within the 

entire wildlife corridor is important (Schuster and Arcese 2015). This study considers 

the potential of least cost pathway (LCP) modeling to identify parcels, and subsequently 

their surrounding areas, for prioritization. Since corridors run through a patchwork of 

land with differing ownership, from public to private, the different ownership types can 
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be classified by their potential for protection. Public lands hold strong protection 

potential due to federal regulations, such as the National Environmental Policy Act and 

the Endangered Species Act, whereas, private land is only encumbered by existing land 

use policies, which are often negligible and, therefore, have minimal protection potential 

(Said et al. 2016; Copeland et al. 2013). 

To test the feasibility of utilizing LCP modeling for prioritization, this study 

considers a set of theorized grizzly bear migration movement corridor within western 

Montana as a case study for application of the conservation easement approach to 

corridor creation. Western Montana’s landscape between the Greater Yellowstone 

Ecosystem (GYE) and Northern Continental Divide Ecosystem (NCDE), where the 

bear’s two isolated populations live, is a collage of private and public lands that has long 

been prioritized by conservation organizations, such as the Yukon to Yellowstone 

Conservation Initiative and Vital Ground Land Trust, for corridor protection. This study 

‘s LCP analyses provide a spatially explicit prioritization of privately owned parcels. 

Such an ability to identify parcels for conservation action by land trusts and other 

conservation organizations should prove to be of value for efforts to protect grizzly bear 

migration corridors between the Greater Yellowstone and Northern Continental Divide 

Ecosystems. The study’s products, while specific for the region, show the potential and 

importance of considering such analyses for future corridor protection work throughout 

the world where ownership types restrict protection possibilities. Additionally, the 

modeling approach employed in this study, which links biophysical modeling of wildlife 

movement potential with the realities of protecting existing conditions, is a unique 

contribution to the conservation field in its current state. 
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Background 

Biodiversity, Habitat Fragmentation, and Conservation 

Natural systems have generally experienced a significant decrease in biodiversity 

throughout the world over the last half century. One of the leading causes of decreased 

biodiversity has been rampant human development, and its associated land conversion 

(Hautier et al. 2015; Newbold et al. 2016). As development has spread and land uses 

have changed, landscapes that were once able to support wildlife populations over vast 

connected ecosystems and habitats have been diminished and become disconnected and 

fragmented. Habitat fragmentation is the division of large-scale natural landscapes and 

habitat into smaller disconnected tracts. The reduction and disconnection of these 

original expansive habitats causes once connected wildlife populations to become 

isolated and vulnerable to localized extinctions (Parks and Harcourt 2002). This 

increased risk of extinction is caused by many things, not the least of which is 

bottlenecking of genetic diversity within the smaller populations. Decreased genetic 

variability from isolation can lead to a lack of genetic fitness and an inability to adapt to 

changing conditions and subsequently extinction (Lande 1998). 

To combat the fragmentation of natural environments and its detrimental 

impacts on biodiversity through localized extinctions, the field of conservation planning 

arose in the latter half of the 20th century (Margules and Pressey 2000; Bottrill and 

Pressey 2012). Informed by the principles of conservation biology, conservation 

planning is a landscape-based approach to mitigating adverse environmental changes 

through collaborative planning processes that aim to conserve and connect existing, and 

potential, habitats. One of the many apparatuses that has been born from conservation 

planning for connecting fragmented habitats across wide-expanses of varied landscapes 
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is conservation corridors (Keeley et al. 2018). Conservation corridors function as 

protected lands, through any number of techniques, ranging from policy formation to 

wholesale acquisition, that link larger habitats through developed and marginalized 

landscapes (Beier et al. 2008). While conservation corridors are a common tool of 

conservation planning, their creation can be difficult. Using land-use policy to create 

conservation corridors can be cumbersome and encompass a painstakingly long 

timeline, due to political climates and bureaucratic processes (Stokes et al. 2010). 

Examples of planning process related conservation corridors are wildlife corridor 

overlay zones in Ventura County, California and Vermont’s wildlife corridor land-use 

directives (Rudnick et al. 2012). And local governments and conservation organizations 

find that fee simple acquisition of enough land to fully complete a conservation corridor 

is generally cost prohibitive (Nobrega et al. 2009). Therefore, corridors are generally 

constructed using multiple conservation planning tools including regulatory policy, land 

acquisition, and conservation easements on targeted land parcels (Iftekhar and Tisdell 

2014).  

Conservation easements are a legally binding restriction, or severance, of 

development rights from a land parcel’s deed and are generally held as an agreement 

between the parcel’s owner and a conservation organization, frequently a land trust 

(Stroman, Kreuter, and Gan 2016). Unlike regulatory policy, conservation easements 

can be completed without burdensome political activities and are significantly cheaper 

than complete fee simple acquisition (Naidoo et al. 2006). This is because most 

conservation easements are entered into on a voluntary basis by the landowner due to 

personal motivation to protect the land’s natural characteristics or the desire for 

reduced tax burdens associated with reduced development potential (Bastian et al. 
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2017). However, it is important to note that motivations vary and are among the many 

aspects of conservation easements that are in need of further academic study (Farmer et 

al. 2011). The difference in cost between easements and fee purchase agreements is due 

to the landowner retaining control of the land, albeit with limitations as outlined in the 

easement’s specific language (Schuster and Arcese 2015). These two characteristics 

make conservation easements among the most practical of options for landscape 

managers in completing targeted conservation measures, such as conservation corridors 

(Main, Roka, and Noss 1999; Hardy, Hepinstall-Cymerman, and Fowler 2016). 

Additionally, another benefit of conservation easements is the ability for one easement 

to lead to another. It has been shown that the feelings of neighboring landowners 

towards entering into an easement with a conservation organization frequently increase 

after a neighbor or community member has already done so (Vizek and Nielsen-Pincus 

2017). However, conservation easements are not a perfect fit as they too require 

financial resources for their acquisition and staff time for the organizations that hold 

and execute conservation easements. 

Corridor and Least Cost Pathway Modeling 

Due to the difficulties and expenses associated with establishing conservation 

corridors, and for all conservation planning more generally, identification of the most 

ecologically valuable land for wildlife movement between protected habitats is of 

extreme importance. Coincidentally, with the advent of conservation planning came an 

increased ability for wildlife movements to be modelled by geographic information 

systems (GIS). GIS technology has allowed biologists to use known animal behaviors to 

predict theoretical movements of animals as they traverse a landscape. In fact, habitat 
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and movement modeling are among the most widely used applications of GIS within 

conservation biology and ecology (Baldwin et al. 2014; Perkl 2016). Specifically, among 

the most common methods used to model animal habitat preference and movement is 

the analysis and creation of movement corridors (Shirabe 2018). Movement corridors 

within GIS models are often created using a theorized resistance layer, known as a cost 

surface, to determine the overall “cost of movement” for a desired action over a 

landscape. In the modeling, the cost surface is the most important part of the model, as 

it significantly determines the model’s outcomes (Zeller et al. 2017). However, creating 

cost surfaces can be extremely difficult and often includes significant subjectivity. 

Frequently the layers are produced solely from expert analysis of landscape 

characteristics, animal behavior, and the theorized impact of geographic features on the 

species for which the model is created (Clevenger et al. 2002; Zeller, McGarigal, and 

Whiteley 2012). Once the surface is created, a corridor analysis tool is run using source 

and destination locations situated within the cost surface layer’s geographic footprint. 

Source and destination points are generally intact functional habitats known to support 

the species in question. The final theorized movement corridor is a product of the cost 

surface, source and destination locations, and selected level of randomness allowed for 

movement. Randomization levels are important for wildlife movement modeling due to 

the fact that animals will not always take the shortest and most direct path, therefore a 

wide swath of habitat must be identified and allowed for likely movement. The corridor 

created from these analyses represents the most likely geographic setting for movement, 

as determined by the resistance values on the cost surface, between the source and 

destination, and can serve as a blueprint for conservation actions by identifying the 

most ecologically important areas within a landscape for connecting fragmented wildlife 
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populations (S. A. Cushman, McKelvey, and Schwartz 2009; S. A. Cushman, Lewis, and 

Landguth 2013). This is of immense importance for maintaining or restoring habitat 

connectivity as it helps prioritize the areas with the most benefit for wildlife movement. 

Knowing where animals are most likely to move between two protected habitats often 

translates into too large of an area to realistically protect using the planning tools 

outlined above. This is especially true today as conservation activity throughout the 

world faces decreased budgets and seemingly more objectives than ever before (Remme 

and Schröter 2016; Brooks et al. 2006). Therefore, to fit within the constraints of limited 

resources, more geographically explicit areas and realistic prioritizations of land for 

corridor protection must be identified (Lombard et al. 2010; Arponen 2012). There are 

many ways to narrow down the larger habitat models to provide realistic avenues for 

protection. Perhaps the most logical is the same tool used to create the movement 

corridors in the first place, GIS. Modeling within a GIS can be used to further 

breakdown wildlife habitat models to identify the greatest impacts to movement within 

the entire wildlife corridor, be those infrastructure developments or incompatible land 

uses (Nobrega et al. 2009; Perkl 2016). This type of modeling has been conducted for all 

sorts of animals, from salamanders to elephants, with the overall goal of gaining a better 

understanding of the areas necessary for linking the habitats theorized as most 

important for migration between intact habitats (Wang, Savage, and Shaffer 2009). 

Many studies and models have gone even further, using GIS tools to specifically identify 

the most ideal individual locations, and even procedures, for protections within 

determined wildlife habitat (Snyder et al. 2008; Lee, Chon, and Ahn 2011). The common 

thread between these studies has been the tool utilized for prioritization within the 

study areas. Using a cost surface with theorized resistance values for conservation 
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protections is nearly identical to the methods used for determining wildlife movement 

preferences over a landscape. However, in the case of human activities (e.g., 

development, protection, other land use activities) the need to address unpredicted 

movement via randomness is negated (Pullinger and Johnson 2010). Without 

randomization, the model is known as a least cost pathway (LCP), which is a generated 

line between the selected source and destination locations with the absolute lowest 

theorized cost of movement over the cost surface. From previous research in 

conservation corridor prioritization modeling (S. A. Cushman, Lewis, and Landguth 

2013; Pressey, Visconti, and Ferraro 2015), it has been shown that there are a wide 

variety of outcomes produced by different approaches to LCP creation. Therefore, 

multiple studies have called for increased research that will lead to the standardization 

of tools and models for identifying suitable elements, such as land ownership or cost of 

land acquisition, for conservation corridor construction (Pullinger and Johnson 2010).  

While different approaches may be taken in modeling the wildlife ranges needed 

as the base for conservation corridors, perhaps the most widely used is the multi-species 

approach (Dilkina et al. 2017). Another method for corridor modeling is through the 

usage of an umbrella species as the species for which the corridor’s habitat modeling is 

directed (Carroll, Noss, and Paquet 2001; Beier, Majka, and Spencer 2008). In general, 

analyses of past conservation corridors have shown that habitat models for umbrella 

species, often large apex carnivores, include habitat for a large number of additional 

wildlife species (Carroll, Noss, and Paquet 2001). This is caused by the need for these 

large animals to cover large expanses of land to meet their habitat and foraging needs. 

Another benefit of using umbrella species is that they commonly fit into the 

classification of charismatic megafauna. This means that the species are well known and 
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can often generate public support for conservation measures, whether that is public 

policy or funding for easements and acquisition (Clucas, McHugh, and Caro 2008; 

Minin and Moilanen 2014). 

Grizzly Bear Migration Corridors 

The grizzly bear (Ursus arctos horribilis) of North America represents a classic 

example of a species that fits the bill for being an umbrella species with large appeal as a 

charismatic megafauna species. Grizzly bears are emblematic of the American West and 

require large home territories, making the species an ideal candidate for usage as a 

corridor creating species (Carroll, Noss, and Paquet 2001). Together with these 

characteristics, grizzly bears within the lower 48 live within a highly fragmented 

landscape. The species was listed (as endangered) under the endangered species act in 

1975, and since then grizzly bear populations have increased throughout their range in 

the contiguous United States. However, the population of grizzly bears in the country is 

divided between two distinct ecosystems lacking connectivity, the Northern Continental 

Divide Ecosystem (NCDE) and the Greater Yellowstone Ecosystem (GYE), both of which 

can be classified as ecosystems with extensive protected lands surrounded by lands at 

risk of development (Walker and Craighead 1997; White et al. 2017). While the NCDE 

population has strong genetic variability from connectivity with Canadian grizzly bear 

populations, bears within the GYE are genetically isolated due to a lack of migration 

between the two populations (Figure 1) (Proctor et al. 2012; 2015). Biologists have long 

cautioned about the continued viability of isolated bear populations due to inbreeding 

and genetic health (Kendall et al. 2009; Mace et al. 2012). Due to these fears, the 

establishment of connectivity between the two isolated grizzly bear populations has 
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been identified as a priority for wildlife managers in Montana, Idaho and Wyoming 

(White et al. 2017). With the population’s growing numbers, there is great potential for 

reestablishing connectivity that has not existed since the populations were originally 

disconnected by westward expansion and hunting in the early 1900’s (Bjornlie et al. 

2014).  
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Figure 1. Current and historic grizzly bear range (Range data from George A. Feldhamer 
et al. 2003). 
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Peck et al’s Study: Potential Paths for Male-Mediated Gene Flow to and 
from an Isolated Grizzly Bear Populations 

Recently, to better understand where connections between the NCDE and GYE 

populations could be made, researchers from the Interagency Grizzly Bear Study Team 

(IGBST), Montana Fish, Wildlife and Parks and the Wyoming Game and Fish 

Department produced a model of corridors for potential migration of male grizzly bears 

(males generally colonize new habitats) in the landscape between the NCDE and GYE 

(Peck et al. 2017). Their corridors were created using a step-selection function to 

produce resistance layers using ecological, physical, and anthropogenic landscape 

features informed by known GPS locations and movements for 124 male grizzly bears in 

the study area. The specific resistance layers included data relating to stream/riparian 

presence, roadways (all types), and human development, all of which can influence 

habitat and movement preferences of grizzly bears. From these conductance layers the 

team used a randomized shortest path model to estimate the amount of theorized grizzly 

bear movements over all grid cells within the geographic region of focus. The resulting 

number of passages between source and destination, being the NCDE and GYE, over 

grid cells produced an estimation of movement potential. From this analysis, the areas 

within the study area with the highest amount of movement potential were identified as 

representing areas with the highest ecological importance for grizzly bear movement 

and habitation between the two populations' current ranges.  

In the study team’s final product, multiple distinct corridors are apparent. The 

corridors generally run along mountain ranges and encompass lands corresponding to 

several of Montana’s national forests (Figure 2). Each of the corridors, however, also run 

into constrictions near western Montana’s population centers. These constrictions are a 
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fundamental issue for the long-term usage of the team’s data, and generally for any 

wildlife movement model, because models can only consider the state of the landscape 

at the time of the study. Therefore, rather than showing long term habitat, Peck et al’s 

study and similar wildlife movement models show the areas in most need of protection 

to prevent landscape changes (i.e., development) from occurring before the 

constrictions become permanent. Western Montana, the study’s focus region, is 

experiencing strong population growth and development (i.e., land conversion) due to 

amenity migration (Shafer 2015), a trend that has been apparent over the last several 

decades (Gosnell, Haggerty, and Travis 2006). These developments threaten the 

viability of these potential corridors and their future connectivity with the NCDE and 

GYE. 
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Figure 2. Current range and migration movement corridors of grizzly bears from Peck et 
al’s study in relation to western Montana’s largest population centers and mountain 
ranges. 

 

 



 

15 
 

This case study, then, considers the prioritization of privately owned parcels of 

land for protection through conservation easements to create a fully protected 

conservation corridor between the GYE and NCDE to link the separate two grizzly bear 

populations. Such a corridor would also help to facilitate the long-term viability of 

wildlife movement for all species that inhabit the same landscape. To do so, the study 

uses least cost pathway analyses within ESRI’s ArcGIS software to determine the most 

direct routes across public and private lands within the theorized grizzly bear migration 

corridors. Using Peck et al’s grizzly bear migration corridors as a framew0rk for 

examining parcels, the modeling used the known distribution of grizzly bears in the 

largely protected landscapes of the NCDE and GYE to identify a complete conservation 

corridor between the two ecosystems. It is important to note that this study does not 

seek to validate the products of Peck et al’s study on potential biophysically-based 

grizzly bear migration corridors. Instead, this study uses Peck et al’s products as a 

framework to move from theoretical biophysically-based modeling to realistic 

conservation action. This assessment was completed with the goal of producing a guide 

for cooperative action between land trusts and other land managers within the study 

area. Subsequently, an additional goal of this study was to show the potential for this 

approach to be applied to additional biophysical movement studies, which in turn would 

allow for such modeling to be used as a tool for standardizing the identification and 

prioritization of conservation efforts on individual parcels when creating conservation 

corridors across the planet.  
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Methods 

Data Acquisition and Preparation 

To develop models that produce the most direct and cost-effective protected 

conservation corridor based on grizzly bear migration corridors in western Montana, the 

first step was to obtain the needed geographic shapefiles and raster files. This study 

benefited greatly from the state of Montana’s state library geographic information 

clearinghouse (http://geoinfo.msl.mt.gov/). This online clearinghouse contained all 

necessary cadastral data, as well as shapefiles for public lands and conservation 

easements across the state. Additionally, all needed shapefiles for grizzly bear habitat 

and population range were readily available through the federal government’s 

geographic data website (https://catalog.data.gov/).  

The most important base data were the migration corridors developed by the 

IGBST, which are publicly available as raster datasets 

(https://www.sciencebase.gov/catalog/item/59149ee6e4b0e541a03e9a58). Within its 

study, the IGBST ran multiple analyses of different theorized migration directions, from 

the NCDE to the GYE, from the GYE to the NCDE, and an analysis using movement 

modeling in both directions. Additionally, the team ran their model at three levels of 

randomization, thereby producing three spatially distinct datasets for each of the three 

directional models. Because of the multiple analyses (nine total), determining which 

dataset to use for this analysis and how to utilize the selected dataset was among the 

first issues for this study. Ultimately, the dataset representing movement in both 

directions from the two grizzly bear populations was selected, as it allowed for a more 

geographically constrained analysis, while also encompassing all theorized potential 

movements. In terms of the level of randomness selected for the multi-directional 
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modeling, the model with the highest level of randomness was selected so as not to 

constrain the model artificially. However, even with the migration data selected, the 

next question for the study was how to exclude erroneous information in the selected 

dataset.  Most of western Montana was used as the geographic setting for the 

conductance layer for movement in the IGBST’s study; therefore, raster cells throughout 

the larger region contained values for movement potential. To limit the raster data to 

only the parts of the landscape with significant movement potential, the selected IGBST 

model’s corresponding raster file was modified to contain only cells with a movement 

potential of .05 (5%) or higher. In doing so the resulting raster file contained only cells 

within a fully connected corridor and removed stray cells or fingers without connections 

between the two ecosystems. 

The next step was compiling the shapefiles for private and public ownership, as 

well as conservation easements in western Montana. Private ownership data were 

derived from the state’s cadastral database by overlaying a shapefile showing the nearly 

600,000 records of all private and public parcels with state’s shapefile for publicly 

owned land (federal, state, tribal, and municipal) and erasing the public parcels. For a 

more complete study of parcel ownership of interest for the conservation corridor, a 

vector file containing conservation easements in Montana was also be obtained. The 

same process for erasing data from the parsed cadastral shapefile was executed to 

remove parcels with already existing conservation easements. After simplifying the 

three base layers of ownership types (private, private with a conservation easement in 

place, and public), the three files were then be merged to create a single vector file, and 

further simplified using the dissolve tool in ESRI’s ArcGIS to insure that only the 

desired ownership type was included for each parcel. With a singular shapefile created 
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for the state, the next step was clipping the shapefile within ArcGIS by the preselected 

and modified corridor raster produced in the previous steps from Peck et al’s study. The 

last step in this initial process was creating a raster image of the parcel data to be used 

for the least cost path analyses for parcel prioritization. To accomplish this, ESRI’s 

polygon to raster tool was on the clipped ownership shapefile (Figure 3). 

 

Figure 3. The mosaic of land ownership within the theorized grizzly bear migration 
corridors. 
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Least Cost Path Modeling and Analysis 

The raster dataset produced using the methods described above functioned as the 

base data necessary for the study’s least cost path assessments (Figure 4). The first step 

in the least cost pathway modeling was to reclassify the data to produce cost surfaces 

based on varying costs for protection and conservation opportunity; three different 

resistance surfaces were created (Table 1). For the first model, the entire grizzly bear 

migration pathway created by Peck et al was considered equal. Therefore, the public 

parcels, private parcels with conservations easements, and unrestricted private lands 

were all assigned resistance weights equal to one (1). The resulting model then 

functioned as the control as the resulting LCPs without any regard for ownership were 

expected to be the shortest. For the second model, the resistance of private parcels 

without conservation easements are treated as being higher (owing to their higher cost 

for protection) and were assigned values of two (2); private parcels with conservation 

easements were treated as equal to public lands and assigned values of one (1) again. 

The final model considered all three ownership types to be different in their costs for 

protection.  Public lands have a score of one (1), conservation easement restricted 

private lands have values of two (2), and unencumbered private lands values of three 

(3). 
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Figure 4. Overall framework of this study's GIS methods. 
 

Table 1. Associated cost values for each of the three model’s resistance surfaces. 

 

These scores were based on the assumption that publicly owned land will be 

protected into the future from development that would negatively impact habitat for 

grizzly bears and other wildlife. For the past half century this has been largely true due 

to the protections from federal land use planning regulations, such as the National 

Cost Values for Land 
Ownership Types 

Public 
Private Land with 

Conservation 
Easement 

Private Land without 
Conservation 

Easement 

Model 1 1 1 1 

Model 2 1 1 2 

Model 3 1 2 3 
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Forest Management Act, National Environmental Policy Act and, for grizzly bear 

habitat, the Endangered Species Act (Laschever 2011). Contrary to the protections found 

on public lands, the private lands within the migration corridors were assumed to have 

the highest cost for protection. This belief is based on the lack of land-use policy, which 

is significantly higher than the cost-values of publicly owned land; doing so will 

represent the high cost associated with removing development rights from land 

currently unencumbered by restrictions. The most important part of the cost surface 

valuation was the private land with an already existing conservation easement in place. 

These lands were given a cost value of two. This is based on the premise that those 

parcels will already have limited potential for future development because of existing 

easements, and therefore stronger habitat potential than fully unencumbered parcels. It 

is important to note that these parcels’ conservation easement purposes (e.g., 

agricultural, forestry, or wildlife habitat related) are not known as such data are not 

included in the state’s dataset. However, regardless of the type of easement it can be 

assumed that the amount of development and landscape change would be minimized 

into the future. 

 With the resistance layers created, the next step was to input the current grizzly 

bear population range boundaries, as determined by the IGBST, for both the NCDE and 

GYE populations. These two ranges served as the source and destination for the various 

LCP model runs. From the two ranges the resistance layer was run in each direction, 

from GYE to NCDE and from NCDE to GYE, through ESRI’s cost distance tool to 

produce a cost distance and backlink raster for each directional model. Backlinks are an 

important aspect of a least cost path analysis in that they are a raster dataset showing 

the least costly movement between cells from the destination to the source. This is 



 

22 
 

important to note when comparing the final LCP products, with each LCP modeling 

being run in both directions the lines will not take the same exact course due to 

geographic locations of parcels and the predetermined least-costly movement direction 

of each created backlink. The subsequently produced raster images served as the raster 

foundations for the final stage of the least cost modeling. To further deepen the projects 

ability to demonstrate the power of LCPs to prioritize parcels, the LCP models 1 and 3 

were run using individual corridors within the entire study area (Figure 5). To do so, the 

GIS masking tool was used to segregate each corridor for two runs, in each direction of 

potential movement, to allow for more in-depth analyses of how this study’s resistance 

layer creation impacts the prioritization of parcels.  
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Figure 5. The entire study area from Peck et al’s grizzly bear migration corridor study, 
with the three corridors used for further study within this study. 
 

Following model runs, the ArcGIS’s “tabulate intersection spatial analysis tool” 

was utilized for the LCPs overlaid on the derived cadastral private parcels data to 

generate statistics describing path length and number of parcels crossed or intersected 

by each LCP. 
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Results 

Overall Process 

In total, 14 different least cost pathways (LCPs) were created in this study. The 

LCPs were created using three different cost valuations, and therefore resistance 

surfaces, within different geographic corridors of the entire grizzly bear migration 

corridor (Table 2). The three different cost valuations produced markedly different LCPs 

for the geographic areas they were considered within. To analyze the different cost 

valuations for their potential benefit for conservation opportunity prioritization, five 

factors were considered for each LCP in the three different valuation schemes. The five 

factors were: 1) number of individual parcels each LCP passed over, 2) the percent of the 

LCPs’ footprint over private land, 3) percent over private land with an existing 

conservation easement, 4) percent over public land, and 5) total LCP length between the 

population ranges. 

 

Table 2. The different geographic constraints of the project's LCP models within the 
project's overall study area. 

 

Model One: All Equal 

In the first model, with all parcels having equal resistance values (value = 1), 

which functioned as the control analysis, six LCPs were created (Figure 6). Two LCPs 

Geographic 
Constraints on 

Pathway 
Analyses 

Entire Study 
Area 

Western 
Corridor 

Central 
Corridor 

Eastern 
Corridor 

Model 1 X  X X X 

Model 2 X    

Model 3 X X X X 



 

25 
 

were created over the equal resistance surface, one from NCDE to GYE and one from 

GYE to NCDE, for each of the three corridors of the grizzly bear pathway model 

(western, central, and eastern). In this modeling, the LCPs were simply the shortest 

geographic lines between the two population ranges due to the equal resistance values, 

hence their ability to function as a control for the other model runs. 
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Figure 6. LCPs produced from the equal value resistance model of ownership within the 
project’s study area. 
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The most direct and least costly pathways are within the central corridor of the 

entire grizzly bear migration corridor. For each direction of LCP modeling in the central 

corridor, the total distance covered by the LCPs was 121.48 kilometers. When overlaid 

on parcel data, the LCP from GYE to NCDE in the central corridor intersects 35 

individual private parcels, with the LCP from NCDE to GYE intersecting 50 private 

parcels. Both of these numbers are the lowest for all of the LCP analyses over the entire 

equal value resistance surface. For the GYE to NCDE LCP, the line passes through public 

land 59.6% of its total length and 1% of the length over private parcels already under 

conservation easement directives. These same numbers were 56.5% and 1.8% 

respectively for the LCP from NCDE to GYE (Table 3). However, the most important 

metric is the percent of the LCP intersecting private parcels. For the NCDE to GYE LCP 

41.7% of the total length intersects private land, while the GYE to NCDE LCP intersects 

private land 39.4% of its path. 

 

Table 3. Selected metrics for the central corridor’s LCPs of the equal resistance model. 

 
Number of 

Private 
Parcels 

Percent of 
Cost Path 

Distance on 
Private 

Percent of 
Cost Path 

Distance on 
Conservation 

Easements 

Percent of 
Cost Path 

Distance on 
Public 

Length of 
Cost Path 
(in Km) 

NCDE to GYE 
(Central) 

50 41.7% 1.8% 56.5% 121.48 

GYE to NCDE 
(Central) 

35 39.4% 1% 59.6% 121.48 

 

While the LCPs in the central corridor of the grizzly bear migration corridor study 

area are the shortest of the three areas, the LCPs using equal resistance values within 

the western and eastern corridors of the corridors show higher percentages of their 
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length over public land and private parcels with existing conservation easements. For 

the western corridor, the LCP from GYE to NCDE stretched 186.68 kilometers and was 

over public land for 61.2% of its length, with 3.1% over private parcels with conservation 

easements in place. The LCP from NCDE to GYE in the western corridor is the same 

length, but only traverses public land for 59.6% of its total length and conservation 

easement restricted parcels for 3.1%. Despite both paths covering more public land as a 

percentage of their paths when compared with the central corridor LCP, 37.3% for the 

NCDE to GYE LCP and 37% for the GYE to NCDE LCP, both LCPs in the western 

corridor have higher numbers of individual private parcels traversed, with 104 and 142 

respectively (Table 4). 

 

Table 4. Selected metrics for the western corridor’s LCPs of the equal resistance model. 

 
Number of 

Private 
Parcels 

Percent of 
Cost Path 

Distance on 
Private 

Percent of 
Cost Path 

Distance on 
Conservation 

Easements 

Percent of 
Cost Path 

Distance on 
Public 

Length of 
Cost Path 
(in Km) 

NCDE to GYE 
(West) 

104 37.3% 3.1% 59.6% 186.68 

GYE to NCDE 
(West) 

142 37% 1.8% 61.2% 186.68 

 

The eastern corridors LCPs from the equal value resistance model are interesting 

in that they differ from one another, which was not the case in the two other 

geographically isolated corridors of the migration corridor study area. For the LCP 

running from GYE to NCDE, 64.7% of the path’s length is over public land, which is the 

highest of all LCPs in the equal value model. However, the eastern corridor’s LCP from 

NCDE to GYE only crosses public land for 41.9% of its total length, which was the lowest 

percentage of all LCPs in the same resistance valuation. More interesting is that this 
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same LCP from NCDE to GYE has the highest amount of length covering private parcels 

with existing conservation easements, at 13.2%. Additionally, both lines were the longest 

of the three corridors with total lengths of 196.06 kilometers yet passing through only 

89 and 109 individual parcels correspondingly (Table 5). 

 

Table 5. Selected metrics for the eastern corridor’s LCPs of the equal resistance model. 

 
Number of 

Private 
Parcels 

Percent of 
Cost Path 

Distance on 
Private 

Percent of 
Cost Path 

Distance on 
Conservation 

Easements 

Percent of 
Cost Path 

Distance on 
Public 

Length of 
Cost Path 
(in Km) 

NCDE to GYE 
(East) 

109 44.9% 13.2% 41.9% 196.06 

GYE to NCDE 
(East) 

89 33.6% 1.7% 64.7% 196.06 

 

For all of the LCPs created within the equal valuation modeling the lowest 

number of parcels traversed was 35 for the LCP running from GYE to NCDE in the 

central corridor of the study area, while the highest number was 142 for the same 

directional LCP in the western corridor. With the resistance surface being equal, these 

numbers, along with the other collected metrics helped to establish a baseline for 

prioritization of parcels for protection. This is caused by the LCP for each corridor only 

selecting for the lowest cost LCP in terms of distance, not assigned conservation 

opportunity from ownership type. 

Model Two: Public and Private with Conservation Easements Equal 
Resistance 

For the second model, public land and private parcels with conservation 

easements are considered equal in their conservation opportunity protection costs and 

private land is considered to be twice as costly, with resistance values of one and two 
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respectively. Unlike the first analysis, only two least cost paths were created moving over 

the resistance surface between the GYE and NCDE, moving in both directions for the 

established grizzly bear ranges (Figure 7). The two paths were created by running the 

analysis over the entire corridor’s resistance surface, which meant only the least costly 

and most direct paths were considered. The reason for this was simply the amount of 

time and computer analysis additional runs required, as this was neither the least nor 

most nuanced model it was assumed that one run would provide a comparison with the 

other models. The resulting paths were located within the central corridor, which is 

associated with the area’s lowest total distance between ranges. 
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Figure 7. LCPs produced from the public and conservation easement equal resistance 
model of ownership within the project’s study area. 
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The resulting LCPs created with the resistance model containing values of 1 and 2 

are quite different from those created with the equal resistance surface analysis. The 

LCP running from NCDE to GYE crosses only 28 total individual parcels and is located 

within public land for 84.2% of its total length. Additionally, the NCDE to GYE LCP had 

11.2% of its length over parcels with existing easements. For the LCP from GYE to NCDE 

in the same analysis, the results are similar. The GYE to NCDE LCP traverses only 30 

individual parcels, crosses public lands 82.8% of its length, and crosses parcels with 

existing conservation easements for 12.7% of its length. In total, the two paths are 

located within private lands for only 4.6% and 4.5% of their entire reaches, respectively 

(Table 6). 

 

Table 6. Selected metrics for the LCP products of the public and conservation easement 
equal resistance model. 

 
Number of 

Private 
Parcels 

Percent of 
Cost Path 

Distance on 
Private 

Percent of 
Cost Path 

Distance on 
Conservation 

Easements 

Percent of 
Cost Path 

Distance on 
Public 

Length of 
Cost Path 
(in Km) 

 

NCDE to GYE 
(Central) 

28 4.6% 11.2% 84.2% 133.80 

GYE to NCDE 
(Central) 

30 4.5% 12.7% 82.8% 133.79 

 

When compared with the same LCPs from the previous model, each LCP shows 

decreases in the total number of parcels traversed and the percent of each LCPs’ length 

over private land, which is expected due to the model’s resistance values. Consequently, 

each LCP also shows significant increases in the length of LCP crossing public land and 

parcels with existing conservation easements. The increases in length over public lands 

were 27.7% for the NCDE to GYE LCP and 23.2% for the GYE to NCDE LCP. These 

differences are associated with LCP increased length of only 12.32 kilometers (Table 7).  
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Table 7. Differences between selected metrics of the central corridor’s LCPs public and 
conservation easement equal model compared with the control (Model 1). 

Central Pathway 
Differences 

Between Runs 

Difference in 
Number of 

Private 
Parcels 

Difference in 
Percent of 
Cost Path 

Distance on 
Private 
Parcels 

Difference in 
Percent of 
Cost Paths 

Distance on 
Conservation 

Easement 
Parcels 

Difference in 
Percent of 
Cost Path 

Distance on 
Public Land 

Difference in 
Length of 
Cost Path 
(in Km) 

 

Model 1 to 2 

NCDE to GYE -22 -37.1% +9.4% +27.7% +12.32 

GYE to NCDE -5 -34.9% +11.7% +23.2% +12.32 

 

Model Three: Public/Conservation Easements/Private 

The third, and final, analysis of this study is the most intricate of the three. In this 

analysis, public land is given the resistance value of one (1), private parcels with existing 

conservation easements are scored as two (2), and private parcels are given a value of 

three (3). As a result, six different LCPs were created, with one running from NCDE to 

GYE and one from GYE to NCDE for each of the three corridors. Similar to the first 

analysis of equal resistance values, and unlike the second analysis, this analysis was 

completed for each of the three corridors within the project’s study area. As mentioned 

previously, this is because the third model is the most varied in valuation of resistance 

models and, therefore, illustrates the fullest ability of such an analysis. Due to the more 

variable resistance values used, the LCPs from this analysis have the most complex 

geographic footprints (Figure 8). 
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Figure 8. LCPs produced from the public, conservation easement, and private land 
unequal resistance model of ownership. 
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The shortest in length of the three sets of LCPs are the two within the central 

corridor of the grizzly bear migration pathway (Figure 9). Each directional LCP has a 

total distance of 138.62 kilometers. The LCP from NCDE to GYE intersects only 19 

individual private parcels, while the LCP from GYE to NCDE crosses 21 private parcels. 

Beyond the slight difference in individual parcels traversed, all of the other measured 

metrics for both lines are identical. The two LCPs intersect public land for 92.9% of their 

entire length and pass through private parcels with existing conservation easements 

4.1% of each segment. This means that for each of the two central corridor LCPs, only 

3% of their entire section (4.16 kilometers), is within private parcels (Table 8). 
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Figure 9. The LCPs from the central corridor of the public, conservation easement, and 
private land unequal resistance model of ownership. 
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Table 8. Selected metrics for the central corridor’s LCPs of the public, conservation 
easement, private land unequal resistance model. 

 
Number of 

Private 
Parcels 

Percent of 
Cost Path 

Distance on 
Private 

Percent of 
Cost Path 

Distance on 
Conservation 

Easements 

Percent of 
Cost Path 

Distance on 
Public 

Length of 
Cost Path 
(in Km) 

 

NCDE to GYE 
(Central) 

19 3% 4.1% 92.9% 138.62 

GYE to NCDE 
(Central) 

21 3% 4.1% 92.9% 138.62 

 

Just as was seen in the first analysis, while the LCPs in the central corridor of the 

grizzly bear migration pathway study area are the shortest, those same LCPs show lower 

percentages of their length over public land than the LCPs in the western corridor 

(Figure 10). For the western corridor, public land accounts for 97.8% of the land over 

which both LCPs run. This percentage is nearly 5% higher than the next highest, in the 

central corridor. Conversely, the two LCPs only pass through private parcels 2.1% of 

their length, the lowest of all three sets of LCPs. With such a small percent of the LCP in 

private, these lands only account for 4.26 kilometers of each LCPs’ 203.78 kilometers, 

the longest total of the three sets. Of interest is the amount of each LCP running through 

private parcels with an existing conservation easement; only .1% of each LCP pass across 

land already under conservation easement restrictions (Table 9). 
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Figure 10. LCPs from the western corridor of the public, conservation easement, and 
private land unequal resistance model of ownership. 
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Table 9. Selected metrics for the western corridor’s LCPs of the public, conservation 
easement, private land unequal resistance model. 

 
Number of 

Private 
Parcels 

Percent of 
Cost Path 

Distance on 
Private 

Percent of 
Cost Path 

Distance on 
Conservation 

Easements 

Percent of 
Cost Path 

Distance on 
Public 

Length of 
Cost Path 
(in Km)  

Run 3 Cost Values: Public = 1, Conservation Easements = 2, Private = 3 

NCDE to GYE 
(West) 

18 2.1% .1% 97.8% 203.78 

GYE to NCDE 
(West) 

17 2.1% .1% 97.8% 203.78 

 

Unlike in the first analysis, where the two different directional LCPs for the 

eastern corridor have very different metrics, the two LCPs in the eastern section 

resulting from the third analysis are identical in their underlaying statistics (Table 10)  

(Figure 11). Each LCP is 199.06 kilometers long, of which 21.89 kilometers crosses 

private land. This is due to the eastern LCPs having the highest percentage of their 

length over private parcels at 11%. As would be expected with the highest rates of 

passage over private land, these LCPs also have the lowest percentage of their length 

over public land. In total, only 87% of each LCP in the eastern corridor was on private 

land, which can be seen from a qualitative look at each LCPs’ geographic footprint. 

 
Table 10. Selected metrics for the eastern corridor’s LCPs of the public, conservation 

easement, private land unequal resistance model. 

 
Number of 

Private 
Parcels 

Percent of 
Cost Path 

Distance on 
Private 

Percent of 
Cost Path 

Distance on 
Conservation 

Easements 

Percent of 
Cost Path 

Distance on 
Public 

Length of 
Cost Path 
(in Km) 

NCDE to GYE 
(East) 

52 11% 2% 87% 199.06 

GYE to NCDE 
(East) 

51 11% 2% 87% 199.06 
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Figure 11. LCPs from the eastern section of the public, conservation easement, and 
private land unequal resistance model of ownership. 
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For all LCPs in the third analysis, the western corridor shows the lowest number 

of individual parcels traversed by each LCP, 18 for the NCDE to GYE LCP and 17 for the 

LCP from GYE to NCDE. This makes logical sense because both LCPs have the lowest 

percentage of length over private land in comparison with those in the other corridors in 

this analysis. However, due to the significant length difference between the current 

western and central corridors, there is a 65.16 kilometer difference in total length 

between the two, and more of the western LCPs length traversed private land, albeit 

only 0.1 kilometer more. 

 From the first analysis to the third, the smallest decrease between LCPs was for 

the eastern LCP from GYE to NCDE at -22.9% (Table 11). On the opposite end of the 

spectrum was the central pathway’s NCDE to GYE LCP with a difference of -38.7% 

(Table 11). Decreasing total length traversing private parcels was echoed in the 

difference of total individual parcels encountered by each LCP. In the western section, 

the GYE to NCDE LCP passed through 125 less individual parcels from the first analysis 

to the third (Table 11). 
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Table 11. Differences between selected metrics of the LCPs in public, conservation 
easement, and private unequal model as compared to the control (Model 1). 

Differences 
Between 
Analyses 

Difference in 
Number of 

Private 
Parcels 

Difference in 
Percent of 
Cost Path 

Distance on 
Private 
Parcels 

Difference in 
Percent of 
Cost Paths 

Distance on 
Conservation 

Easement 
Parcels 

Difference in 
Percent of 
Cost Path 

Distance on 
Public Land 

Difference in 
Length of 
Cost Path 
(in Km) 

 

Analysis 1 to 3 

NCDE to GYE 
(Central) 

-31 -38.7% +2.3% +36.4% +17.14 

GYE to NCDE 
(Central) 

-14 -36.4% +3.1% +33.3% +17.14 

NCDE to GYE 
(Eastern) 

-57 -33.9% -11.2% +45.1% +12.32 

GYE to NCDE 
(Eastern) 

-38 -22.9% +.3% +22.3% +12.32 

NCDE to GYE 
(West) 

-86 -35.2% -3% +38.2% +17.10 

GYE to NCDE 
(West) 

-125 -34.9% -1.7% +36.6% +17.10 
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Discussion 

Multiple potential conservation corridors exist within western Montana that 

could link the two isolated populations of endangered grizzly bears on protected lands if 

just over four kilometers of private land is placed under conservation easements (Figure 

12 and Tables 8 and 9). That is a finding, that, until this case study, was not previously 

known. When considered in relation to the future vitality of grizzly bear populations, 

this study shows that prioritized efforts by local land trusts and other conservation 

easement holding organizations could focus resources to solve a major conservation 

goal. This study also shows how important conservation easements are in realizing that 

goal. While public lands are largely protected from development, as noted previously, 

their landscape footprint is predominantly set into the future, therefore conservation 

easements hold the key to protecting connected parcels of necessary wildlife habitat.  

Additionally, this study and the approach it employed serves as an important bridge 

between wildlife movement modeling approaches and applied landscape protection 

studies.  
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Figure 12. LCPs from the first (control) and third models, showing the difference in 
geographic footprint as the intricacy of resistance scoring increased. 
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In the broader context, this study shows the potential for least cost pathway 

modeling to help quantify conservation costs associated with creating protected 

conservation corridors for wildlife species of all sorts, in any landscape. The fact that it 

can be done using a basic geographic information system is one of the most important 

aspects of the study. The simplicity of this study’s methods demonstrates the power that 

conservation organizations can use to prioritize conservation easement efforts, 

depending upon their own designs and goals, to bring about conservation successes. 

Overall Case Study Outcomes 

The products of this case study show that there truly is great potential for 

connecting the long isolated grizzly bear populations of western Montana through a 

protected landscape. Whether the different models are utilized to quantify and identify 

parcels for protection, or total length of distance on protected public lands, there are 

obvious examples of how LCPs can inform and quantify the conservation efforts needed. 

Model 3, which accounts for both the impact of unprotected private lands on potential 

travel and the cost of acquiring these lands, clearly shows that prioritizing parcels based 

on conservation opportunity is possible. The clearest indicator of this is through the 

percent of length each LCP spent traversing private land, which can be seen very clearly 

in Table 11. In total, the connection could be made with only 17 conservation easements, 

which is a surprisingly low number. However, the LCP models have broader utility 

because they can be used to identify areas in which conservation organizations should 

focus outreach and other resources. This LCP modeling approach can also be utilized to 

adjust for information or knowledge that is gained relating to individual owner 

preferences for conservation easement establishment.  But isolating singular parcels for 
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protection is only of so much importance. Instead, being able to identify areas that 

emerge as LCP bottlenecks by is also of immense value. 

For example, looking at the LCPs produced in Model run 3 for the western and 

central corridors, one can clearly see that these enter and exit the GYE from the same 

location (Figure 6). Therefore, it is clear that the private parcels within that area have 

high importance for the establishment of conservation corridors connecting to this 

source/destination area. In this case, the parcels are roughly between the towns of Ennis 

and Norris. With this information, land trusts can begin to use their limited resources 

individually or in larger landscape collaboratives to construct plans to target these most 

important regions. Additionally, there are other areas in which both the second and 

third models pass, which suggests that they may have similar importance. And from the 

geographic footprint of any LCP, much can be learned for conservation action on a 

broader scale. 

In a similar sense, the LCPs also identify geographically specific areas within 

large infrastructure projects that are likely to impact the movement and actions of 

grizzly bears. Grizzly bears have shown a negative response to movement across large 

roadways and have increased mortality in areas with high traffic. In parts of the grizzly 

bears’ northern range, highway overpasses and roadway shoulder fencing has shown to 

decrease grizzly bear mortality and increase movement potential (Cushman, Lewis, and 

Landguth 2014). Throughout western Montana, highways and interstates bisect the 

movement corridors created by Peck et al’s original study. The LCPs created in this 

study show specific points on many of those roadways where focused conservation 

action has the lowest total cost for corridor protection. Therefore, the LCPs’ 

intersections with these same roadways could serve to maximize the conservation 
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benefit from wildlife friendly infrastructure at these points. Along with roadways, this 

same benefit of identifying specific points on roadways could do the same for many 

other development types, such as pipelines or powerlines. 

Study Issues 

Despite this project’s ability to produce defensible and useful products, there are 

several ways in which this project’s methods and models might be improved. One main 

issue is simply related to the geographic area in which the case study takes place. 

Western Montana is a patchwork of different ownership types, which is not unlike the 

rest of the country and world. However, unlike the rest of the country and world, 

western Montana is unique in its amount of land under some sort of public ownership. 

Throughout the western United States, federal agencies like the Forest Service and 

Bureau of Land Management are responsible for management of large swaths of public 

lands. Montana as a state has the twelfth highest percentage of land under federal 

ownership in the country, and most of that exists in the state’s western half. Therefore, 

this study’s LCPs were heavily influenced by the amount of public land. Different 

landscapes with lower amounts of public lands are less likely to produce such clean and 

clear-cut prioritization outcomes. Instead, LCP modeling in less public land-centric 

regions is likely to produce greater variation in outcomes (geographic footprints, 

number of parcels, etc.).   Future testing of this approach in a landscape with a higher 

amount of private land would likely yield much different results and further test the 

overall feasibility of such a prioritization modeling. 

Another shortcoming of the approach used in this study is that parcels were not 

scored relative to size. In general, larger parcels hold higher conservation opportunity 
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due to the ratio of transaction cost to acreage protection values. In the approach used 

here, larger parcels are penalized for their size because each individual pixel adds to the 

total cost of movement. To combat this issue, pixels corresponding to each individual 

parcel would need to be scored for the parcel’s  relative size and shape, thus 

approximating  estimated or true costs; additional GIS operations would be required to 

make produce the raster-based cost surface to accomplish this. This would also require 

that assumptions or decision rules be developed and employed based on expert 

knowledge, but that may be imperfect. This issue, unlike the issue of ownership 

patchworks, is potentially solvable and could be a next step in the model. However, it 

should be noted that such rules and additional steps in the GIS design would eliminate 

some of the simplicity and benefit of the basic LCP analysis.  

Another area of importance when considering this project is that of cost value 

scoring. Resistance values are subjective, like in this study, and that brings with it the 

potential for bias. Instead of a concrete number derived arbitrarily, resistance values for 

nearly all LCP analyses are set by “experts” in the field. This is of importance because 

any resistance values have the power to completely change the outcome of an entire 

study. This study’s three different analyses illustrate this issue very clearly. In Model 1, 

which acts as a control, the equal values produce only the shortest path. From there, as 

cost values increase and resistance surfaces become more intricate, LCPs start to behave 

quite differently and are highly dependent upon the range and location of the values. 

For this study’s, and any other LCP analyses, to be stronger and more credible “experts” 

must be consulted to produce about stronger and more robust products that better 

represent the actual cost associated with model’s goals. 
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While there are issues with this study’s framework, such as those identified 

above, this study was conducted primarily for the purpose of testing an approach that 

future prioritization models might follow and expand from. In addition to simply using 

ownership type to create resistance values for protection, future modeling using a 

similar approach would be able to include additional geographic information to further 

identity parcels or groups of parcels for focused conservation action. Examples of such 

geographic datasets could potentially include additional values for intensity of 

development or proximity of infrastructure. However, it should be noted that by adding 

in additional datasets and values the study becomes much more complicated and many 

such variables would likely be included in the original biophysical modeling of wildlife 

movement, such as in the case of this study’s base migration data. 

Further Research and Implementation 

Beyond the scope of this project, this study can be refined in many ways to help 

land trusts and other conservation organizations identify and protect key parcels to 

bring about success in landscape protection. The most important aspect is the creation 

of a base GIS model (Figure 4) that can be utilized for similar case studies in specific 

species related work or on broader landscape characteristic prioritization by creating 

LCPs. However, another key aspect of this study is the responsiveness of the model to 

slight changes in the resistance surface and cost valuation. The model showed how 

important the change in cost values were in producing different corridor conservation 

outcomes. This same responsiveness could be used to identify “keystone” parcels that 

would create large changes to the overall path of the model’s LPCs should these be 

placed under easements. To do this, a modeler would simply need to edit the base data 
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for conservation easements in the data acquisition phase of the methods for singular 

parcels and then run the complete model. By comparing the underlying data for LCPs 

prior to and after editing the resistance surface, land trusts and other conservation 

organizations could consider the importance of individual parcels on protecting an 

entire corridor. 

This same responsiveness and ease of running the model is also very important in 

that changing ownership types, or even subdivision of large parcels, could be done in 

almost real-time. With the model in place to merge, clip, and join base level ownership 

data, changes to any aspect of the individual datasets could be seamlessly updated and 

subsequently help to adjust conservation planning. These changes could have significant 

impacts upon the overall dynamics of a potential corridor, and being able to adjust 

quickly would allow for conservation action with limited resources.  

Conclusion 

While only one small case study, this project shows the potential for least cost 

pathway (LCP) analyses to prioritize land parcels based on perceived conservation 

opportunity. At the most basic level, LCP modeling can be quite simple to employ and 

produce important knowledge not otherwise easily obtained. Similar projects adapted 

for this or other study areas would not require intensive modification of methods or 

extensive research into new products for geospatial analysis to produce meaningful 

outcomes. However, to make future work like this more impactful over large landscapes, 

such as in the case study, communication and interorganizational planning needs to 

take place. Conservation easements, and factors related to their implementation, were 
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the focus of the methods for this project. But the same approach would be useful for fee 

simple purchase prioritization or even stewardship practices.  

If biodiversity is to be maintained utilizing corridor protection of different sorts 

around the world, more studies like this need to be completed. Bringing together the 

immense knowledge bases within the fields of wildlife movement modeling and habitat 

protection is key to realizing actual on-the-ground benefits. Moving into the future, the 

need for more conservation action will only increase, just as the available resources for 

that action will continue to be stretched further and further. When used together with 

collaborative planning at a landscape level, this study’s blueprint and methods hold the 

potential to save time, money, and energy in the difficult work of conserving our natural 

world. 
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