576 research outputs found

    Influence of Different Envelope Maskers on Signal Recognition and Neuronal Representation in the Auditory System of a Grasshopper

    Get PDF
    Background: Animals that communicate by sound face the problem that the signals arriving at the receiver often are degraded and masked by noise. Frequency filters in the receiver’s auditory system may improve the signal-to-noise ratio (SNR) by excluding parts of the spectrum which are not occupied by the species-specific signals. This solution, however, is hardly amenable to species that produce broad band signals or have ears with broad frequency tuning. In mammals auditory filters exist that work in the temporal domain of amplitude modulations (AM). Do insects also use this type of filtering? Principal Findings: Combining behavioural and neurophysiological experiments we investigated whether AM filters may improve the recognition of masked communication signals in grasshoppers. The AM pattern of the sound, its envelope, is crucial for signal recognition in these animals. We degraded the species-specific song by adding random fluctuations to its envelope. Six noise bands were used that differed in their overlap with the spectral content of the song envelope. If AM filters contribute to reduced masking, signal recognition should depend on the degree of overlap between the song envelope spectrum and the noise spectra. Contrary to this prediction, the resistance against signal degradation was the same for five of six masker bands. Most remarkably, the band with the strongest frequency overlap to the natural song envelope (0–100 Hz) impaired acceptance of degraded signals the least. To assess the noise filter capacities of singl

    Immune cells control skin lymphatic electrolyte homeostasis and blood pressure

    Get PDF
    The skin interstitium sequesters excess Na+ and Cl- in salt-sensitive hypertension. Mononuclear phagocyte system (MPS) cells are recruited to the skin, sense the hypertonic electrolyte accumulation in skin, and activate the tonicity-responsive enhancer-binding protein (TONEBP, also known as NFAT5) to initiate expression and secretion of VEGFC, which enhances electrolyte clearance via cutaneous lymph vessels and increases eNOS expression in blood vessels. It is unclear whether this local MPS response to osmotic stress is important to systemic blood pressure control. Herein, we show that deletion of TonEBP in mouse MPS cells prevents the VEGFC response to a high-salt diet (HSD) and increases blood pressure. Additionally, an antibody that blocks the lymph-endothelial VEGFC receptor, VEGFR3, selectively inhibited MPS-driven increases in cutaneous lymphatic capillary density, led to skin Cl- accumulation, and induced salt-sensitive hypertension. Mice overexpressing soluble VEGFR3 in epidermal keratinocytes exhibited hypoplastic cutaneous lymph capillaries and increased Na+, Cl-, and water retention in skin and salt-sensitive hypertension. Further, we found that HSD elevated skin osmolality above plasma levels. These results suggest that the skin contains a hypertonic interstitial fluid compartment in which MPS cells exert homeostatic and blood pressure-regulatory control by local organization of interstitial electrolyte clearance via TONEBP and VEGFC/VEGFR3-mediated modification of cutaneous lymphatic capillary function

    Smart technologies for personalized experiences: a case study in the hospitality domain

    Get PDF
    Recent advances in the field of technology have led to the emergence of innovative technological smart solutions providing unprecedented opportunities for application in the tourism and hospitality industry.With intensified competition in the tourism market place, it has become paramount for businesses to explore the potential of technologies, not only to optimize existing processes but facilitate the creation of more meaningful and personalized services and experiences. This study aims to bridge the current knowledge gap between smart technologies and experience personalization to understand how smart mobile technologies can facilitate personalized experiences in the context of the hospitality industry. By adopting a qualitative case study approach, this paper makes a two-fold contribution; it a) identifies the requirements of smart technologies for experience creation, including information aggregation, ubiquitous mobile connectedness and real time synchronization and b) highlights how smart technology integration can lead to two distinct levels of personalized tourism experiences. The paper concludes with the development of a model depicting the dynamic process of experience personalization and a discussion of the strategic implications for tourism and hospitality management and research

    Neuronal precision and the limits for acoustic signal recognition in a small neuronal network

    Get PDF
    Recognition of acoustic signals may be impeded by two factors: extrinsic noise, which degrades sounds before they arrive at the receiver’s ears, and intrinsic neuronal noise, which reveals itself in the trial-to-trial variability of the responses to identical sounds. Here we analyzed how these two noise sources affect the recognition of acoustic signals from potential mates in grasshoppers. By progressively corrupting the envelope of a female song, we determined the critical degradation level at which males failed to recognize a courtship call in behavioral experiments. Using the same stimuli, we recorded intracellularly from auditory neurons at three different processing levels, and quantified the corresponding changes in spike train patterns by a spike train metric, which assigns a distance between spike trains. Unexpectedly, for most neurons, intrinsic variability accounted for the main part of the metric distance between spike trains, even at the strongest degradation levels. At consecutive levels of processing, intrinsic variability increased, while the sensitivity to external noise decreased. We followed two approaches to determine critical degradation levels from spike train dissimilarities, and compared the results with the limits of signal recognition measured in behaving animals

    A new measurement of direct CP violation in two pion decays of the neutral kaon

    Get PDF
    The NA48 experiment at CERN has performed a new measurement of direct CP violation, based on data taken in 1997 by simultaneously collecting K_L and K_S decays into pi0pi0 and pi+pi-. The result for the CP violating parameter Re(epsilon'/epsilon) is (18.5 +/- 4.5(stat)} +/- 5.8 (syst))x10^{-4}.Comment: 18 pages, 6 figure

    Measurement of the Ratio Gamma(KL -> pi+ pi-)/Gamma(KL -> pi e nu) and Extraction of the CP Violation Parameter |eta+-|

    Full text link
    We present a measurement of the ratio of the decay rates Gamma(KL -> pi+ pi-)/Gamma(KL -> pi e nu), denoted as Gamma(K2pi)/Gamma(Ke3). The analysis is based on data taken during a dedicated run in 1999 by the NA48 experiment at the CERN SPS. Using a sample of 47000 K2pi and five million Ke3 decays, we find Gamma(K2pi)/Gamma(Ke3) = (4.835 +- 0.022(stat) +- 0.016(syst)) x 10^-3. From this we derive the branching ratio of the CP violating decay KL -> pi+ pi- and the CP violation parameter |eta+-|. Excluding the CP conserving direct photon emission component KL -> pi+ pi- gamma, we obtain the results BR(KL -> pi+ pi-) = (1.941 +- 0.019) x 10^-3 and |eta+-| = (2.223 +- 0.012) x 10^-3.Comment: 20 pages, 7 figures, accepted by Phys. Lett.

    Measurement of the branching ratios of the decays Xi0 --> Sigma+ e- nubar and anti-Xi0 --> anti-Sigma+ e+ nu

    Full text link
    From 56 days of data taking in 2002, the NA48/1 experiment observed 6316 Xi0 --> Sigma+ e- nubar candidates (with the subsequent Sigma+ --> p pi0 decay) and 555 anti-Xi0 --> anti-Sigma+ e+ nu candidates with background contamination of 215+-44 and 136+-8 events, respectively. From these samples, the branching ratios BR(Xi0 --> Sigma+ e- nubar)= (2.51+-0.03stat+-0.09syst)E(-4) and BR(anti-Xi0 --> anti-Sigma+ e+ nu)= (2.55+-0.14stat+-0.10syst)E(-4) were measured allowing the determination of the CKM matrix element |Vus| = 0.209+0.023-0.028. Using the Particle Data Group average for |Vus| obtained in semileptonic kaon decays, we measured the ratio g1/f1 = 1.20+-0.05 of the axial-vector to vector form factors.Comment: 16 pages, 11 figures Submitted to Phys.Lett.

    Measurement of the branching ratio of the decay Ξ0Σ+μνˉμ\Xi^{0}\rightarrow \Sigma^{+} \mu^{-} \bar{\nu}_{\mu}

    Full text link
    From the 2002 data taking with a neutral kaon beam extracted from the CERN-SPS, the NA48/1 experiment observed 97 Ξ0Σ+μνˉμ\Xi^{0}\rightarrow \Sigma^{+} \mu^{-} \bar{\nu}_{\mu} candidates with a background contamination of 30.8±4.230.8 \pm 4.2 events. From this sample, the BR(Ξ0Σ+μνˉμ\Xi^{0}\rightarrow \Sigma^{+} \mu^{-} \bar{\nu}_{\mu}) is measured to be (2.17±0.32stat±0.17syst)×106(2.17 \pm 0.32_{\mathrm{stat}}\pm 0.17_{\mathrm{syst}})\times10^{-6}

    Measurement of K^0_e3 form factors

    Get PDF
    The semileptonic decay of the neutral K meson, KL -> pi e nu (Ke3), was used to study the strangeness-changing weak interaction of hadrons. A sample of 5.6 million reconstructed events recorded by the NA48 experiment was used to measure the Dalitz plot density. Admitting all possible Lorentz-covariant couplings, the form factors for vector (f_+(q^2)), scalar (f_S) and tensor (f_T) interactions were measured. The linear slope of the vector form factor lambda_+ = 0.0284+-0.0007+-0.0013 and values for the ratios |f_S/f_+(0)| = 0.015^{+0.007}_{-0.010}+-0.012 and |f_T/f_+(0)| = 0.05^{+0.03}_{-0.04}+-0.03 were obtained. The values for f_S and f_T are consistent with zero. Assuming only Vector-Axial vector couplings, lambda_+ = 0.0288+-0.0004+-0.0011 and a good fit consistent with pure V-A couplings were obtained. Alternatively, a fit to a dipole form factor yields a pole mass of M = 859+-18 MeV, consistent with the K^*(892) mass.Comment: 16 pages, 7 figures. submitted to Phys. Lett.

    Measurement of the branching ratio of the decay KL -> pi e nu and extraction of the CKM parameter |Vus|

    Get PDF
    We present a new measurement of the branching ratio R of the decay KL -> pi e nu (Ke3), relative to all charged KL decays with two tracks, based on data taken with the NA48 detector at the CERN SPS. We measure R = 0.4978 +- 0.0035. From this we derive the Ke3 branching fraction and the weak coupling parameter |Vus| in the CKM matrix. We obtain |Vus|f+(0) = 0.2146 +- 0.0016, where f+(0) is the vector form factor in the Ke3 decay.Comment: 18 pages, 8 figures. accepted by Phys Lett.
    corecore