445 research outputs found

    Oscillation Regularity in Noise-Driven Excitable Systems with Multi-Time-Scale Adaptation

    Get PDF
    We investigate oscillation regularity of a noise-driven system modeled with a slow after-hyperpolarizing adaptation current (AHP) composed of multiple-exponential relaxation time scales. Sufficiently separated slow and fast AHP time scales (biphasic decay) cause a peak in oscillation irregularity for intermediate input currents I, with relatively regular oscillations for small and large currents. An analytic formulation of the system as a stochastic escape problem establishes that the phenomena is distinct from standard forms of coherence resonance. Our results explain data on the oscillation regularity of the pre-BĂśtzinger complex, a neural oscillator responsible for inspiratory breathing rhythm generation in mammals

    Oscillation Regularity in Noise-Driven Excitable Systems with Multi-Time-Scale Adaptation

    Get PDF
    We investigate oscillation regularity of a noise-driven system modeled with a slow after-hyperpolarizing adaptation current (AHP) composed of multiple-exponential relaxation time scales. Sufficiently separated slow and fast AHP time scales (biphasic decay) cause a peak in oscillation irregularity for intermediate input currents I, with relatively regular oscillations for small and large currents. An analytic formulation of the system as a stochastic escape problem establishes that the phenomena is distinct from standard forms of coherence resonance. Our results explain data on the oscillation regularity of the pre-BĂśtzinger complex, a neural oscillator responsible for inspiratory breathing rhythm generation in mammals

    The effect of energetic electron precipitation on middle mesospheric night-time ozone during and after a moderate geomagnetic storm

    Get PDF
    Using a ground-based microwave radiometer at Troll Station, Antarctica (72°S, 2.5°E, L = 4.76), we have observed a decrease of 20–70% in the mesospheric ozone, coincident with increased nitric oxide, between 60 km and 75 km altitude associated with energetic electron precipitation (E > 30 keV) during a moderate geomagnetic storm (minimum Dst of −79 nT) in late July 2009. NOAA satellite data were used to identify the precipitating particles and to characterize their energy, spatial distribution and temporal variation over Antarctica during this isolated storm. Both the ozone decrease and nitric oxide increase initiate with the onset of the storm, and persist for several days after the precipitation ends, descending in the downward flow of the polar vortex. These combined data present a unique case study of the temporal and spatial morphology of chemical changes induced by electron precipitation during moderate geomagnetic storms, indicating that these commonplace events can cause significant effects on the middle mesospheric ozone distribution

    Summer sudden Na number density enhancements measured with the ALOMAR Weber Na Lidar

    Get PDF
    We present summer Na-densities and atmospheric temperatures measured 80 to 110 km above the Arctic Lidar Observatory for Middle Atmosphere Research (ALOMAR). The Weber Na Lidar is part of ALOMAR, located at 69° N in Norway, 150 km north of the Arctic Circle. The sun does not set here during the summer months, and measurements require a narrowband Faraday Anomalous Dispersion Optical Filter (FADOF). <br><br> We discuss an observed sudden enhancement in the Na number density around 22:00 UT on 1 to 2 June 2006. We compare this observation with previous summer measurements and find a frequent appearance of Na number density enhancements near local midnight. We describe the time of appearance, the altitude distribution, the duration and the strength of these enhancements and compare them to winter observations. We investigate possible formation mechanisms and, as others before, we find a strong link between these Na number density enhancements and sporadic E layers

    Information representation in an oscillating neural field model modulated by working memory signals

    Get PDF
    We study how stimulus information can be represented in the dynamical signatures of an oscillatory model of neural activity—a model whose activity can be modulated by input akin to signals involved in working memory (WM). We developed a neural field model, tuned near an oscillatory instability, in which the WM-like input can modulate the frequency and amplitude of the oscillation. Our neural field model has a spatial-like domain in which an input that preferentially targets a point—a stimulus feature—on the domain will induce feature-specific activity changes. These feature-specific activity changes affect both the mean rate of spikes and the relative timing of spiking activity to the global field oscillation—the phase of the spiking activity. From these two dynamical signatures, we define both a spike rate code and an oscillatory phase code. We assess the performance of these two codes to discriminate stimulus features using an information-theoretic analysis. We show that global WM input modulations can enhance phase code discrimination while simultaneously reducing rate code discrimination. Moreover, we find that the phase code performance is roughly two orders of magnitude larger than that of the rate code defined for the same model solutions. The results of our model have applications to sensory areas of the brain, to which prefrontal areas send inputs reflecting the content of WM. These WM inputs to sensory areas have been established to induce oscillatory changes similar to our model. Our model results suggest a mechanism by which WM signals may enhance sensory information represented in oscillatory activity beyond the comparatively weak representations based on the mean rate activity

    A case study of a sporadic sodium layer observed by the ALOMAR Weber Na lidar

    Get PDF
    Several possible mechanisms for the production of sporadic sodium layers have been discussed in the literature, but none of them seem to explain all the accumulated observations. The hypotheses range from direct meteoric input, to energetic electron bombardment on meteoric smoke particles, to ion neutralization, to temperature dependent chemistry. The varied instrumentation located on Andøya and near Tromsø in Norway gives us an opportunity to test the different theories applied to high latitude sporadic sodium layers. We use the ALOMARWeber sodium lidar to monitor the appearance and characteristics of a sporadic sodium layer that was observed on 5 November 2005. We also monitor the temperature to test the hypotheses regarding a temperature dependent mechanism. The EISCAT Tromsø Dynasonde, the ALOMAR/UiO All-sky camera and the SKiYMET meteor radar on Andøya are used to test the suggested relationships of sporadic sodium layers and sporadic E-layers, electron precipitation, and meteor deposition during this event. We find that more than one candidate is eligible to explain our observation of the sporadic sodium layer

    Heppa III Intercomparison Experiment on Electron Precipitation Impacts: 2. Model‐Measurement Intercomparison of Nitric Oxide (NO) During a Geomagnetic Storm in April 2010

    Get PDF
    Precipitating auroral and radiation belt electrons are considered to play an important part in the natural forcing of the middle atmosphere with a possible impact on the climate system. Recent studies suggest that this forcing is underestimated in current chemistry-climate models. The HEPPA III intercomparison experiment is a collective effort to address this point. In this study, we apply electron ionization rates from three data-sets in four chemistry-climate models during a geomagnetically active period in April 2010. Results are evaluated by comparison with observations of nitric oxide (NO) in the mesosphere and lower thermosphere. Differences between the ionization rate data-sets have been assessed in a companion study. In the lower thermosphere, NO densities differ by up to one order of magnitude between models using the same ionization rate data-sets due to differences in the treatment of NO formation, model climatology, and model top height. However, a good agreement in the spatial and temporal variability of NO with observations lends confidence that the electron ionization is represented well above 80 km. In the mesosphere, the averages of model results from all chemistry-climate models differ consistently with the differences in the ionization-rate data-sets, but are within the spread of the observations, so no clear assessment on their comparative validity can be provided. However, observed enhanced amounts of NO in the mid-mesosphere below 70 km suggest a relevant contribution of the high-energy tail of the electron distribution to the hemispheric NO budget during and after the geomagnetic storm on April 6
    • …
    corecore