609 research outputs found

    Development of Stresses in Cohesionless Poured Sand

    Full text link
    The pressure distribution beneath a conical sandpile, created by pouring sand from a point source onto a rough rigid support, shows a pronounced minimum below the apex (`the dip'). Recent work of the authors has attempted to explain this phenomenon by invoking local rules for stress propagation that depend on the local geometry, and hence on the construction history, of the medium. We discuss the fundamental difference between such approaches, which lead to hyperbolic differential equations, and elastoplastic models, for which the equations are elliptic within any elastic zones present .... This displacement field appears to be either ill-defined, or defined relative to a reference state whose physical existence is in doubt. Insofar as their predictions depend on physical factors unknown and outside experimental control, such elastoplastic models predict that the observations should be intrinsically irreproducible .... Our hyperbolic models are based instead on a physical picture of the material, in which (a) the load is supported by a skeletal network of force chains ("stress paths") whose geometry depends on construction history; (b) this network is `fragile' or marginally stable, in a sense that we define. .... We point out that our hyperbolic models can nonetheless be reconciled with elastoplastic ideas by taking the limit of an extremely anisotropic yield condition.Comment: 25 pages, latex RS.tex with rspublic.sty, 7 figures in Rsfig.ps. Philosophical Transactions A, Royal Society, submitted 02/9

    Energy dissipation in soil samples during drained triaxial shearing

    Get PDF
    The discrete-element method was used to simulate drained triaxial compression of large-scale, polydisperse numerical samples at a range of void ratios while tracing all relevant energy components. The frictional dissipation and boundary work are almost equal regardless of sample density. The volumetric work reaches a steady value at large strain. However, the distortional work increases continually as sample deformation continues post-critical state. There is a preferential orientation for frictional dissipation at around 45° to the major principal stress direction. This matches the orientation at which there is the largest number of sliding contacts. The work equations, which are fundamental in most commonly used constitutive models, are linear when plotted against deviatoric strain. The modified Cam Clay work equation substantially over-predicts the frictional dissipation for dense samples. An alternative, thermodynamically consistent work equation gives a much better description of frictional dissipation and is therefore recommended to ensure accuracy in modelling

    Sedimentary context and palaeoecology of Gigantoproductus shell beds in the Mississippian Eyam Limestone Formation, Derbyshire carbonate platform, central England

    Get PDF
    A sedimentological study was conducted at two localities exposing the Mississippian Eyam Limestone Formation of the Derbyshire carbonate platform, UK. Ricklow Quarry comprises seven facies with diverse skeletal assemblages, representing deposition on the inner to middle ramp within open marine waters. Once-a-Week Quarry comprises four facies, dominated by crinoidal debris representing deposition on the inner ramp. Both localities expose Gigantoproductus shell beds. Palaeoecological analysis of a single shell bed from each locality enabled investigation of the rapid colonization and success of this taxon on the platform. At Ricklow Quarry, on the eastern side of a localized mud mound, both life (>72% of thin and thick-shelled brachiopods in life position) and neighbourhood assemblages are present. A low-moderate diversity community (<1.37 and <0.8 Shannon diversity index) rapidly established over relict Brigantian mud mounds. Shell beds are preluded by intervals of decreased energy that allowed larvae to settle. Once established, the dominance of thick-shelled individuals enabled baffling, potentially providing localized shelter for larvae and nearby individuals. At Once-a-Week Quarry, where no mud mound is present, only thick-shelled Gigantoproductus species and a low diversity community (<1.07 Shannon diversity index) exclusively comprising neighbourhood assemblages (37% in life position) is present. The presence of inactive mud mounds at Ricklow Quarry appears to have been the key to the success of Gigantoproductus species enabling the onset of stable communities in the shelter provided by the relict mound. Once the first palaeocommunities were established, larvae dispersed and colonized higher energy settings, such as at Once-a-Week Quarry

    Temporal change in groundwater level following the 1999 (Mw = 7.5) Chi-Chi earthquake, Taiwan

    Full text link
    We examine the post-seismic change in the groundwater level following the 1999 (Mw = 7.5) Chi-Chi earthquake in central Taiwan, as recorded by a network of 70 evenly distributed hydrological stations over a large alluvial fan near the epicenter. Four types of post-seismic responses may be distinguished: In type 1, the groundwater level declined exponentially with time following a coseismic rise. This was the most common response in the study area and occurred in unconsolidated sediments on the Choshui River fan. In type 2, the groundwater level rose exponentially with time following a coseismic fall. This occurred in the deformed and fractured sedimentary rocks in the foothills near the Chelungpu fault that ruptured in the Chi-Chi earthquake. In type 3, the groundwater level continued to decline with time following a coseismic fall. This also occurred in the deformed and fractured sedimentary rocks near the ruptured fault. Finally, in type 4, the groundwater level, following a coseismic rise, stayed at the same level or even rose with time before it eventually declined. This occurred mostly in unconsolidated sediments along the coast of central Taiwan and along the Peikang Stream. We analyze these post-seismic responses by using a one-dimensional model. Together with the results from well test, the analysis show that the type 1 response may be explained by an aquifer model with coseismic recharge and post-seismic subhorizontal discharge across a length of 500-5,000 m; the type 2 response may be explained by a model of coseismic discharge and post-seismic recharge from surface water; the type 3 response may be explained by a model of coseismic discharge and post-seismic subhorizontal discharge across a length of 500-5,000 m; and the type 4 response may be explained by a model of coseismic recharge and sustained post-seismic recharge from surface water. The characteristic time for the post-seismic changes is similar to that for the groundwater-level decline during dry seasons before the earthquake, suggesting that there was no earthquake-induced changes in the aquifer properties (i.e., hydraulic conductivity), confirming the earlier results from recession analyses of the post-seismic streamflow elsewhere after several earthquakes

    Total ankle prostheses in rheumatoid arthropathy: Outcome in 52 patients followed for 1–9 years

    Get PDF
    Background and purpose The first generations of total ankle replacements (TARs) showed a high rate of early failure. In the last decades, much progress has been made in the development of TARs, with the newer generation showing better results. We evaluated TARs implanted with rheumatoid arthritis (RA) or juvenile inflammatory arthritis (JIA) as indication

    Hydrothermal dolomitization of basinal deposits controlled by a synsedimentary fault system in Triassic extensional setting, Hungary

    Get PDF
    Dolomitization of relatively thick carbonate successions occurs via an effective fluid circulation mechanism, since the replacement process requires a large amount of Mg-rich fluid interacting with the CaCO3 precursor. In the western end of the Neotethys, fault-controlled extensional basins developed during the Late Triassic spreading stage. In the Buda Hills and Danube-East blocks, distinct parts of silica and organic matter-rich slope and basinal deposits are dolomitized. Petrographic, geochemical, and fluid inclusion data distinguished two dolomite types: (1) finely to medium crystalline and (2) medium to coarsely crystalline. They commonly co-occur and show a gradual transition. Both exhibit breccia fabric under microscope. Dolomite texture reveals that the breccia fabric is not inherited from the precursor carbonates but was formed during the dolomitization process and under the influence of repeated seismic shocks. Dolomitization within the slope and basinal succession as well as within the breccia zones of the underlying basement block is interpreted as being related to fluid originated from the detachment zone and channelled along synsedimentary normal faults. The proposed conceptual model of dolomitization suggests that pervasive dolomitization occurred not only within and near the fault zones. Permeable beds have channelled the fluid towards the basin centre where the fluid was capable of partial dolomitization. The fluid inclusion data, compared with vitrinite reflectance and maturation data of organic matter, suggest that the ascending fluid was likely hydrothermal which cooled down via mixing with marine-derived pore fluid. Thermal gradient is considered as a potential driving force for fluid flow
    corecore