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Abstract 

The discrete element method was used to simulate drained triaxial compression of large-scale, 

polydisperse numerical samples at a range of void ratios while tracing all relevant energy components. 

The frictional dissipation and boundary work are almost equal regardless of sample density. The 

volumetric work reaches a steady value at large strain. However, the distortional work increases 

continually as sample deformation continues post-critical state. There is a preferential orientation for 

frictional dissipation at around 45° to the major principal stress direction. This matches the orientation 

at which there is the largest number of sliding contacts. The work equations, which are fundamental in 

most commonly used constitutive models, are linear when plotted against deviatoric strain. The 

Modified Cam Clay work equation substantially over-predicts the frictional dissipation for dense 

samples. An alternative, thermodynamically-consistent work equation gives a much better description 

of frictional dissipation and is therefore recommended to ensure accuracy in modelling. 
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Introduction 

The most commonly-used models of soil behaviour have been formulated based on energy 

considerations. The original Cam Clay model was developed by assuming that plastic work is 

dissipated entirely by friction (Roscoe & Schofield, 1963; Schofield & Wroth, 1968). Modified Cam 

Clay addressed some of the shortcomings of this model by revising the work equation to include 

volumetric dissipation (Roscoe & Burland, 1968). Since then, many modifications of the basic Cam 

Clay models have been proposed (Gens & Potts, 1988) but all retain energy-based fundamentals. This 

is also true of many alternative constitutive models, e.g., NorSand (Jefferies, 1993; Jefferies & 

Shuttle, 2002), Severn-Trent sand (Gajo & Muir Wood, 1999) and the model of Manzari & Dafalias 

(1997). 

Apart from its central role in constitutive modelling of soil, energy is key in seismic analysis and 

geotechnical earthquake engineering. A wide range of energy-based approaches have been proposed 

to predict the seismic liquefaction potential of a sand (e.g., Berrill & Davis, 1985; Law et al., 1990; 

Figueroa et al., 1994; Trifunac, 1995). The damping ratio, which quantifies the energy dissipated 

during cyclic loading, is often computed using the areas underneath and enclosed by a hysteresis loop 

on a stress–strain plot (e.g., experiments of Seed et al., 1986; Vucetic & Dobry, 1991; simulations of 

Sitharam & Vinod, 2010; El Shamy & Denissen, 2012). This method of computing energy terms is 

limited to distinguishing energy dissipated during the loading cycle and the maximum elastic energy 

stored during the cycle for the entire system. 

The discrete element method (DEM), a numerical tool which originated in soil mechanics (Cundall & 

Strack, 1979), is capable of giving very accurate information about energy transfer and dissipation 

within a particulate system. DEM simulations can capture the features of soil behaviour described by 

the critical state framework: researchers including Ng (2009), Yan & Dong (2011), Guo & Zhao 

(2013) and Huang et al. (2014b) have confirmed that DEM simulations can give a critical state locus, 

while Hanley et al. (2015) and Ciantia et al. (2015) have confirmed that DEM simulations of 

crushable particles can generate a normal compression line. Although DEM has been widely adopted 
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by the soil mechanics community since its inception (O’Sullivan, 2014), energy is not routinely 

tracked in DEM simulations of quasi-static monotonic tests. This is quite surprising considering the 

obvious importance of energy in critical-state soil mechanics and the ease with which energy can be 

monitored in DEM. In comparison with experimental data analyses, the energy input and dissipated 

can be decomposed into more fundamental components with high temporal and spatial resolution, and 

thereby obtain insights into the development of critical state in sheared granular materials which 

cannot be obtained experimentally. 

In some prior studies, energy has been considered when particle crushing is permitted. Cheng et al. 

(2004) and Bolton et al. (2008) quantify energy dissipation in their simulations of agglomerate 

crushing and use continuum Cam Clay models in their interpretation of the discrete data. Wang & 

Yan (2012) and Zhou et al. (2013) also consider energy in their simulations of crushable 

agglomerates. In simulations where crushing is neglected, as in this paper, Zhang et al. (2013) studied 

the balance between sliding dissipation and rolling dissipation for 2D simulations which included a 

rolling resistance model. El Shamy & Denissen (2012) computed the energy dissipated prior to 

liquefaction in their undrained (constant volume) cyclic loading simulations. Bi et al. (2011) and 

Zamani & El Shamy (2013) also show the evolution of energy dissipation for a biaxial test and 

various soil–foundation–structure systems, respectively. Sun et al. (2011) used granular solid 

hydrodynamics in conjunction with DEM to investigate elastic energy and energy dissipation during 

compression of a granular material. 

The research described in this paper builds upon this prior body of work with three main aims. Firstly, 

to quantify the evolution of the individual components of energy during shearing of large-scale 

polydisperse numerical samples with differing initial void ratios to critical state. Secondly, to resolve 

a contradiction in the literature on the existence of a preferential orientation for frictional dissipation 

(Wang & Yan, 2012; Zhang et al., 2013) and propose an explanation for this behaviour. Thirdly, to 

extend the research of Cheng et al. (2004) and Bolton et al. (2008) by linking energy calculated from 

micro-scale measures to work equations of macro-scale constitutive models. The simulation data are 

used to assess the accuracy and applicability of both the original and Modified Cam Clay work 
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equations, acknowledging theoretical flaws inherent in their formulation (Collins & Hilder, 2002; 

Collins & Muhunthan, 2003). The frictional dissipation, quantified using temporal and spatial 

summations of per-contact friction increments, is also compared with the dissipation predicted using a 

thermodynamically-consistent work equation (Collins & Hilder, 2002). This analysis, linking particle-

scale discrete element simulations with continuum models, enables recommendations to be made for 

increasing the accuracy of constitutive models. 

Frictional dissipation was the only mechanism available for energy dissipation in these simulations, 

i.e., rotational resistance, particle crushing and numerical damping were omitted during shearing. 

Both rotational resistance (Wensrich & Katterfeld, 2012; Huang et al., 2017) and commonly used 

damping models are numerically convenient but not physically realistic. Crushing models used in 

DEM are by necessity a significant simplification of reality and affect the position of the critical state 

line in 𝑒 − log(𝑝′) space (Kikumoto et al., 2010). Every parameter in the model has a clear physical 

basis. This simplicity is appropriate in a fundamental study of the constitutive models and their 

associated work equations. Note also that Schofield & Wroth (1968) assumed that that plastic work is 

dissipated entirely by friction; including other terms would preclude a fundamental analysis of that 

assumption. 

 

DEM Simulations 

Numerical samples were created containing unbreakable spherical particles with a grading 

approximating that of Dunkirk sand. The ratio of maximum to minimum particle diameters is 20.6; 

101,623 particles were used to ensure representative volume elements that were statistically 

representative were achieved. Fig. 1 shows a representative sample prior to shearing and the particle 

size distribution. The experimental data points on Fig. 1a were measured by the authors using a 

Sympatec QICPIC laser scanning apparatus (Witt et al., 2004). Periodic boundaries were used to 

contain these cuboidal samples. These are not physical boundaries; instead opposite faces of the cell 

are numerically connected so that particles that leave the cell through one face are mapped back into 
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the cell at the opposite face (Cundall, 1988). A global strain field is applied uniformly across the 

periodic cell so that relative velocities between particles anywhere in the sample include a 

contribution from the applied strain field. These boundary conditions ensure a uniform deformation 

field (Cundall, 1988), eliminate inhomogeneities at the periphery of the sample (Huang et al., 2014a) 

and preclude the development of shear bands. The effective continuum normal and shear stresses for 

the sample are denoted as 𝜎𝑥
′ , 𝜎𝑦

′ , 𝜎𝑧
′  and 𝜏𝑥𝑦 , 𝜏𝑥𝑧 , 𝜏𝑦𝑧 , respectively, where 𝑥 , 𝑦  and 𝑧  are the 

reference Cartesian axes; these stresses were determined by a summation over all the contacts in the 

sample as outlined in, e.g., Potyondy & Cundall (2004).  The normal strains, 휀𝑥 , 휀𝑦 , 휀𝑧 , and 

incremental normal strains, 𝛿휀𝑥 , 𝛿휀𝑦 , 𝛿휀𝑧 , were determined from the movements of the periodic 

boundaries. 

The samples were prepared using the two-step process described by Hanley et al. (2014). Particles 

were initially placed at randomly-chosen locations within a periodic cell without overlapping existing 

particles. Then the cell dimensions were gradually reduced using a servo-control algorithm to create 

isotropic, equilibrated samples at two initial mean effective stresses: 𝑝0
′  = 500 kPa or 1 MPa. 

Interparticle friction coefficients (µ) of 0.0, 0.05 or 0.25 were used during this sample preparation 

process to create six isotropic samples with a range of void ratios between 0.486 and 0.593. This 

method for controlling the packing density by varying µ during sample preparation is commonly used 

in DEM, e.g., Thornton (2000). 

Once the samples had equilibrated at the required 𝑝0
′ , µ was set at 0.25 for all samples based on the 

study of Huang et al. (2014b) and the samples were again equilibrated. Each of these six samples was 

then sheared to critical state in a conventional drained triaxial compression simulation by applying a 

normal strain rate of 휀�̇� = 1 s
-1
. Although this strain rate exceeds those used in laboratory testing by 

orders of magnitude, such rates are common in DEM simulations. These simulations are quasi-static, 

with inertia numbers less than 8.2 x 10
-4

 throughout shearing (da Cruz et al., 2005). The servo-control 

algorithm maintained 𝜎𝑥
′ = 𝜎𝑦

′ = 𝑝0
′  = constant during shearing. 
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Increasing µ  before shearing can cause an unrealistic, artificially stiff response at small strains 

because contacts are prevented from sliding at the very initial stage of loading (Bernhardt et al., 

2016). However, the response quickly becomes physically reasonable upon shearing (within 0.2% 

shear strain for Bernhardt et al., 2016) so this initial phase does not materially affect the results at 

critical state. 

Fig. 2 shows the critical state line (CSL) for these samples in both 𝑒 − log(𝑝′) and 𝑞 − 𝑝′ spaces 

where 𝑞 and 𝑝′ are the deviator and mean effective stresses, respectively, and 𝑒 is the void ratio. In 

order to obtain a broad CSL in 𝑒 − log(𝑝′) space, data previously presented in Huang et al. (2014b) 

were included that consider triaxial shearing of smaller Dunkirk sand samples containing 43,906 

particles (µ = 0.25). This smaller sample gives a similar macro-scale response to the larger one, 

although slightly less smooth due to the presence of fewer particles. Fig. 2 also indicates the states at 

the end of isotropic compression to show their position relative to the CSL. In this paper, the samples 

are distinguished by their initial state parameters, 𝜓0, which was defined by Been & Jefferies (1985) 

as the difference between the initial 𝑒 and 𝑒 at critical state at the same 𝑝′. The extent to which the 

material response can be considered homogeneous and hence representative depends on the size of the 

homogenisation or averaging volume used to determine the continuum (or average) parameters 

relative to the particle size. In this study, the average stress and void ratio calculated in sub-layers of 

thickness equal to one-eighth of the length of the periodic cell were compared; the small variation 

amongst these values confirmed that the periodic cell can be considered a representative element 

volume. 

The simulations were run using 16 24-core nodes of the UK’s national high-performance computing 

facility, ARCHER. The DEM code used was a version of the open-source, MPI-parallelised code 

LAMMPS (Plimpton, 1995). This code was modified by the authors to include computations of 

various energy and work terms, a stress-control algorithm for periodically-bounded samples and a 

simplified Hertz-Mindlin contact model which has been substantially revised to match the Hertz 

implementation described by Itasca Consulting Group (2008). In summary, for two overlapping 

elastic spheres with radii 𝑟𝑎  and 𝑟𝑏 , the normal component of the contact force, 𝑭𝑛 , is given by 
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equation (1) where 𝛼𝑛 is the interparticle overlap, 𝐺𝑝 is the particle shear modulus, 𝜐𝑝 is the particle 

Poisson’s ratio, 𝑟𝑔 = √
𝑟𝑎𝑟𝑏

𝑟𝑎+𝑟𝑏
 and 𝒏 is a unit vector along the line joining the sphere centres: 

𝑭𝑛 =
4𝐺𝑝𝑟𝑔

3(1−𝜐𝑝)
𝛼𝑛

3

2𝒏       (1) 

The tangential or shear component of the contact force, 𝑭𝑡 , is calculated incrementally as 

𝑭𝑡
𝛽
= 𝑭𝑡

𝛽−1
− 𝑘𝑡𝛿𝜶𝑡       (2)  

𝑘𝑡 =
4𝐺𝑝𝑟𝑔

2−𝜐𝑝
√𝛼𝑛       (3) 

where 𝛽 − 1 and 𝛽 represent consecutive time-steps, 𝑘𝑡  is the contact shear tangent stiffness and 𝛿𝜶𝑡  

is the increment of relative shear displacement during time-step 𝛽. A slip criterion is imposed to limit 

the tangential force: 

|𝑭𝑡
𝛽
| ≤ 𝜇|𝑭𝑛|       (4) 

𝐺𝑝 = 29.17 GPa and 𝜐𝑝 = 0.2 for these simulations: realistic parameters for a quartz sand. The other 

required input parameters were a particle density of 2670 kg/m
3
 and a time-step of 3 ns. Neither 

damping nor gravity was active during triaxial compression. 

 

Energy Calculations 

Work terms computed using macro-scale quantities 

The data available in the DEM simulations allow work and energy terms to be calculated from both a 

continuum (system) perspective and a particle-scale perspective. Consider firstly the overall response 

for the current system where only normal strains are applied. Following Muir Wood (1990), in 

incremental form, the boundary work input per unit volume is 

𝛿𝑊 = 𝜎𝑥
′𝛿휀𝑥 + 𝜎𝑦

′𝛿휀𝑦 + 𝜎𝑧
′𝛿휀𝑧      (5) 
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This can be subdivided into an increment of distortional work per unit volume, 𝛿𝑊𝑑, causing a change 

of sample shape and an increment of volumetric work per unit volume, 𝛿𝑊𝑣, causing a change of 

sample volume (Muir Wood, 1990). These may be calculated as 

𝛿𝑊𝑑 = 𝑞𝛿휀𝑞        (6) 

𝛿𝑊𝑣 = 𝑝′𝛿휀𝑣        (7) 

where 𝛿휀𝑞  and 𝛿휀𝑣 are the respective increments of triaxial shear and volumetric strain, calculated 

using equations (8) and (9) for a triaxial element compressed in the z-direction. 𝑞  and 𝑝′  were 

calculated using equations (10) and (11). The full 3D stress tensor was used in the calculation of 𝑞 

because of its ready availability in DEM. 

𝛿휀𝑞 =
2

3
(𝛿휀𝑧 − 0.5(𝛿휀𝑥 + 𝛿휀𝑦))    (8) 

𝛿휀𝑣 =
1

3
(𝛿휀𝑥 + 𝛿휀𝑦 + 𝛿휀𝑧)      (9) 

𝑞 = √
1

2
((𝜎𝑥

′ − 𝜎𝑦
′ )

2
+ (𝜎𝑥

′ − 𝜎𝑧′)2 + (𝜎𝑦
′ − 𝜎𝑧′)

2
) + 3(𝜏𝑥𝑦

2 + 𝜏𝑥𝑧
2 + 𝜏𝑦𝑧

2 )  (10) 

𝑝′ =
1

3
(𝜎𝑥

′ + 𝜎𝑦
′ + 𝜎𝑧

′)      (11) 

Equations (5)–(7) are all increments per unit volume. In each time-step, 𝛽, these increments were 

multiplied by the current sample volume, 𝑉𝛽, and added to the corresponding accumulated boundary, 

distortional or volumetric work terms: 

𝑊𝛽 = 𝑊𝛽−1 + 𝛿𝑊𝛽𝑉𝛽      (12) 

𝑊𝑑
𝛽
= 𝑊𝑑

𝛽−1
+ 𝛿𝑊𝑑

𝛽
𝑉𝛽      (13) 

𝑊𝑣
𝛽
= 𝑊𝑣

𝛽−1
+ 𝛿𝑊𝑣

𝛽
𝑉𝛽      (14) 
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Work equations for constitutive models 

The original Cam Clay (Roscoe & Schofield, 1963; Schofield & Wroth, 1968) and Modified Cam 

Clay (Roscoe & Burland, 1968) work equations are given in Muir Wood (1990). On a per-unit-

volume basis, the total input energy increment given by equation (5) is the sum of equations (6) and 

(7): 

𝛿𝑊 = 𝛿𝑊𝑑 + 𝛿𝑊𝑣      (15) 

The elastic portion of this total increment is recoverable whereas the plastic portion, 𝛿𝑊𝑝, is available 

for dissipation. 𝛿𝑊𝑝 is calculated as 

𝛿𝑊𝑝 = 𝛿𝑊𝑑
𝑝
+ 𝛿𝑊𝑣

𝑝
= 𝑞𝛿휀𝑞

𝑝
+ 𝑝′𝛿휀𝑣

𝑝
    (16) 

Equation (16) is analogous to equation (15) except plastic strain increments are used as indicated by 

the superscript ‘𝑝’, rather than total strain increments. In developing the original Cam Clay work 

equation, Schofield & Wroth (1968) assumed that 𝛿𝑊𝑝 is dissipated entirely by friction and used 

equation (17) from Taylor (1948) which is based on shear box test results: 

𝛿𝑊𝑝 = 𝑀𝑝′𝛿휀𝑞
𝑝
      (17) 

where 𝑀  is the value of the stress ratio, 𝜂 =
𝑞

𝑝′
, at critical state. For unbreakable particles, the 

extended work equation proposed by McDowell & Bolton (1998) which includes surface energy has 

the same form as equation (17). Modified Cam Clay has a work equation which includes 𝛿휀𝑞
𝑝

, 𝛿휀𝑣
𝑝

 

and 𝑀: 

𝛿𝑊𝑝 = 𝑝′√(𝑀𝛿휀𝑞
𝑝)

2
+ (𝛿휀𝑣

𝑝)
2
     (18) 

In the DEM simulations presented here, at each time-step, 𝛽, these work increments per unit volume 

were multiplied by the current overall sample volume 𝑉𝛽 and added to the corresponding accumulated 

work terms as shown in equation (12). This approach is valid because the simulations are triaxial 
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rather than true triaxial. In order to compute these work equations, the total strain increments were 

divided into elastic and plastic increments. It was assumed that 

𝛿휀𝑞 = 𝛿휀𝑞
𝑒 + 𝛿휀𝑞

𝑝
      (19) 

and 

𝛿휀𝑣 = 𝛿휀𝑣
𝑒 + 𝛿휀𝑣

𝑝
      (20) 

where 𝛿휀𝑞
𝑒 and 𝛿휀𝑣

𝑒 represent the elastic components of the shear and volumetric strain increments, 

respectively. This decomposition is applicable to volumetric strain increments (e.g., Muir Wood, 

1990; Einav, 2007; Kamai & Boulanger, 2012) and also shear strain increments if the work conjugate 

shear strain measure is linear (Jefferies & Been, 2006), as in this case, e.g., equation (8). The elastic 

strain increments were calculated as follows (Muir Wood, 1990): 

𝛿휀𝑣
𝑒 =

𝛿𝑝′

𝐾
=

𝜅𝛿𝑝′

(1+𝑒)𝑝′
      (21) 

𝛿휀𝑞
𝑒 =

𝛿𝑞

3𝐺
       (22) 

where (1 + 𝑒) is the specific volume, 𝐾 and 𝐺 are the respective bulk and shear moduli of the sample, 

and 𝜅 is the gradient of the swelling line, i.e., the negative slope of the unloading–reloading line in 

(1 + 𝑒) :ln(𝑝’ ) space. 𝐾  changes during shearing due to changes in 𝑒  and (primarily) in 𝑝’ . 𝐺  is 

assumed to be constant while the Poisson’s ratio of the sample 𝜐 is allowed to vary. This is the 

preferred option for an energy-based analysis, even though a constant 𝐺 does not match experimental 

observations. While it is usually acceptable to make the opposite assumption, i.e., to fix 𝜐 and allow 𝐺 

to vary, the resulting model does not conserve energy during closed stress cycles (Zytynski et al., 

1978; Gens & Potts, 1988). Once the elastic and total increments of strain are known, the plastic 

increments are calculated from equations (19) and (20). 

Three parameters are required in the DEM code to calculate the work equations: 𝑀, 𝐺 and 𝜅. 𝑀 was 

set at 0.687: the slope of the best-fit critical state line in 𝑞 − 𝑝′ space based on several preliminary 
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drained triaxial simulations. Small-strain simulations, limited to a shear strain, 휀𝑞, of around 5 x 10
-7

, 

were used to find 𝐺  and 𝜅 for each sample. 𝐺  was taken to be one-third of the slope of a linear 

regression fitted to a 𝑞 − 휀𝑞 plot. Once 𝐺 is known, 𝜅 may be found from a 휀𝑣– 휀𝑞 plot, the slope of 

which is 
𝐺

𝐾
=

𝜅𝐺

(1+𝑒)𝑝′
 (Muir Wood, 1990). The validity of this method for finding 𝜅 was confirmed by 

comparing with the results to one-dimensional load–unload oedometer tests; these tests were 

restricted to a maximum strain of 0.0003 and so the hysteresis was negligible. The small-strain elastic 

parameters are given in Table 1. 

 

Table 1. Initial void ratios, mean effective stresses, state parameters and elastic parameters of the samples 

µ during 

isotropic 

compression 

Initial mean 

effective stresses, 

𝑝0
′  (kPa) 

Initial state 

parameter, 

𝜓0 

Initial 

void ratio, 

𝑒0 

Shear 

modulus, 𝐺 

(MPa) 

Gradient of 

swelling line, 

𝜅 

0.0 500 -0.0923 0.489 398 0.00266 

0.05 500 -0.0457 0.536 340 0.00320 

0.25 500 0.0117 0.593 154 0.00721 

0.0 1000 -0.0948 0.486 511 0.00424 

0.05 1000 -0.0475 0.533 442 0.00500 

0.25 1000 0.0098 0.591 212 0.01075 

 

In addition to equations (17) and (18), two other forms of these work equations were computed. The 

Cam Clay work equation was computed assuming irreversible shear strains, i.e., 𝛿휀𝑞 ≈ 𝛿휀𝑞
𝑝

 and 

𝛿𝑊𝑝 = 𝑀𝑝′𝛿휀𝑞. Building on the work of Houlsby (1981), Collins and his co-workers highlighted 

theoretical inconsistencies in the development of the Modified Cam Clay work equation (Collins & 

Hilder, 2002; Collins & Muhunthan, 2003). They proposed the thermodynamically consistent 
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statement of the Modified Cam Clay work equation given by equations (23)–(25) where 𝑝𝑐
′  is the 

mean normal consolidation pressure: 

𝑑𝛹2 =
𝑝𝑐
′

2
𝛿휀𝑣

𝑝
       (23) 

𝛿𝛷 =
𝑝𝑐
′

2
√(𝑀𝛿휀𝑞

𝑝)
2
+ (𝛿휀𝑣

𝑝)
2
     (24) 

𝛿𝑊𝑝 = 𝑑𝛹2 + 𝛿𝛷      (25) 

𝑑𝛹2, which may be positive or negative, represents the recoverable contribution to the plastic work 

from the free energy caused by micro-scale rearrangements (Collins & Hilder, 2002). 𝛿𝛷 represents 

the dissipative part of the plastic work and is always positive. 𝛿𝛷 is closely related to the conventional 

Modified Cam Clay work equation given by equation (18): the equations differ by a factor of 
𝑀2+𝜂2

2𝑀2 , 

implying they become equal at critical state when 𝜂 = 𝑀. The sum of 𝑑𝛹2 and 𝛿𝛷 gives the total 

increment of the plastic work per unit volume. These terms were computed within the DEM code in 

the same manner as the conventional work equations for original and Modified Cam Clay. 𝑝𝑐
′  was 

calculated using equation (26), assuming an elliptical yield locus (Muir Wood, 1990): 

𝑝𝑐
′ = 𝑝′

𝑀2+𝜂2

𝑀2        (26) 

 

Energy terms computed from micro-mechanics 

The particle-scale energy terms were also traced. The translational and rotational kinetic energies are 

respectively calculated as 

𝐸𝑘𝑡 =
1

2
∑ 𝑚𝑖𝑣𝑖

2𝑁𝑝
𝑖=1

       (27) 

𝐸𝑘𝑟 =
1

2
∑ 𝐼𝑖𝜔𝑖

2𝑁𝑝
𝑖=1

      (28) 
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where 𝑁𝑝  is the total number of particles, 𝑚𝑖 , 𝑣𝑖  and 𝜔𝑖  are the mass, translational speed and 

rotational speed, respectively, of particle 𝑖, and 𝐼𝑖 = 0.4𝑚𝑖𝑟𝑖
2 is the moment of inertia of a spherical 

particle 𝑖. 

Energy is dissipated by frictional sliding whenever equation (4) is invoked. The friction dissipated at 

contact 𝑗 during time-step 𝛽 is 

𝛿𝐸𝑓_𝑗
𝛽

= {

|𝑭𝑡
𝛽−1

+𝑭𝑡
𝛽
|

2

|𝑭𝑡_𝑜
𝛽

−𝑭𝑡
𝛽
|

𝑘𝑡
, |𝑭𝑡_𝑜

𝛽
| > 𝜇|𝑭𝑛|

0, |𝑭𝑡_𝑜
𝛽
| ≤ 𝜇|𝑭𝑛|

    (29) 

using 𝑭𝑡_𝑜
𝛽

 to represent the tangential force computed using equation (2) before applying the slip 

criterion (Itasca Consulting Group, 2008). The non-zero case for 𝛿𝐸𝑓_𝑗
𝛽

 is a product of two terms. The 

first is the magnitude of the average tangential force at contact 𝑗 at the beginning and end of time-step 

𝛽 . The second term is the magnitude of the slip displacement: the change in magnitude of the 

tangential force as a result of applying equation (4) divided by the shear tangent stiffness. For each 

contact, the frictional dissipation is accumulated: 

𝐸𝑓_𝑗
𝛽

= 𝐸𝑓_𝑗
𝛽−1

+ 𝛿𝐸𝑓_𝑗
𝛽

      (30) 

The normal component of strain energy is found as the area underneath a graph of |𝑭𝑛| against 𝛼𝑛. 

This is given by equation (31) for a single Hertzian contact, 𝑗, by substituting equation (1): 

𝐸𝑠𝑛_𝑗 = ∫ |𝑭𝑛|𝑑𝛼𝑛
𝛼𝑛
0

=
4𝐺𝑝𝑟𝑔

3(1−𝜐𝑝)
|𝒏|∫ 𝛼𝑛

3

2𝑑𝛼𝑛
𝛼𝑛
0

=
2

5
|𝑭𝑛|𝛼𝑛   (31) 

Unlike the normal component of strain energy, the tangential component requires incremental 

calculation. This calculation is done after the magnitude of the tangential force, |𝑭𝑡
𝛽
| , has been 

rescaled to 𝜇|𝑭𝑛| if necessary. At any contact, 𝑗, 

𝐸𝑠𝑡_𝑗
𝛽

= 𝐸𝑠𝑡_𝑗
𝛽−1

+ 𝛿𝐸𝑠𝑡_𝑗
𝛽

      (32) 
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𝛿𝐸𝑠𝑡_𝑗
𝛽

=
|𝑭𝑡

𝛽−1
+𝑭𝑡

𝛽
|

2

|𝑭𝑡
𝛽
−𝑭𝑡

𝛽−1
|

𝑘𝑡
      (33) 

𝛿𝐸𝑠𝑡_𝑗
𝛽

 has a similar form to 𝛿𝐸𝑓_𝑗
𝛽

, being the product of two terms: the magnitude of the average 

tangential force at contact 𝑗  at the beginning and end of time-step 𝛽 , and the magnitude of the 

incremental displacement. This incremental displacement differs from 𝛿𝜶𝑡 if contact sliding occurs. 

The total normal and tangential components of strain energy and the frictional dissipation by time-

step 𝛽 are found by summation over all 𝑁𝑐 contacts: 

𝐸𝑠𝑛 = ∑ 𝐸𝑠𝑛_𝑗
𝑁𝑐
𝑗=𝑖       (34) 

𝐸𝑠𝑡
𝛽
= 𝐸𝑠𝑡

𝛽−1
+ ∑ 𝛿𝐸𝑠𝑡_𝑗

𝛽𝑁𝑐
𝑗=𝑖      (35) 

𝐸𝑓
𝛽
= 𝐸𝑓

𝛽−1
+∑ 𝛿𝐸𝑓_𝑗

𝛽𝑁𝑐
𝑗=𝑖      (36) 

Within the simulations, the energy terms are stored for each contact and also for the whole system. As 

the tangential components of strain energy are calculated incrementally, a small error inevitably 

accrues over a large number of time-steps. When two particles lose contact, there will be a tiny, 

residual value of 𝐸𝑠𝑡_𝑗  which may be positive or negative. This residual strain energy is transferred to 

the accumulated frictional dissipation, i.e., 𝐸𝑠𝑡_𝑗 is subtracted from 𝐸𝑠𝑡
𝛽

 and added to 𝐸𝑓
𝛽

. This small 

correction ensures that the accumulated errors in the strain energy are minimised. 

All work terms are calculated from discrete or incremental data, rather than being obtained by 

continuous integration; consequently they are only accurate within a tolerance. The large number of 

particles and small increments used here served to minimise this discretisation error. 

 

Results and Discussion 
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Stress–strain behaviour and scalar measures of fabric 

The evolution of stress ratio, 𝜂, and 휀𝑣 with axial strain are shown in Fig. 3. Each sample attains a 

clear critical state before 30% axial strain. As expected, the samples with negative initial state 

parameters dilate throughout shearing (Been & Jefferies, 1985). The loosest samples initially contract 

prior to dilating and overall have a contractive response. 

The coordination number, 𝑍 , is a scalar measure of the fabric, i.e., the internal topology of the 

granular material. It is defined as the average number of contacts per particle: 𝑍 = 2
𝑁𝑐

𝑁𝑝
 where 𝑁𝑝 and 

𝑁𝑐  are the numbers of particles and of interparticle contacts, respectively. The mechanical 

coordination number, 𝑍𝑚 , is a variant which was defined by Thornton (2000) to be the average 

number of contacts per particle excluding those with fewer than two contacts. 𝑍, 𝑍𝑚 and the fraction 

of contacts which are sliding are all plotted in Fig. 4. 𝑍𝑚 stabilises at around 5 before 5% axial strain 

is attained and remains almost constant thereafter. 𝑍 shows more variability before critical state at 

which stable values of 3.6–3.85 are attained. These results are in qualitative agreement with Thornton 

(2000). Although samples with similar 𝜓0  show similar macro-scale behaviour (Fig. 3), the 

(mechanical) coordination number for samples with similar 𝜓0 is sensitive to 𝑝0
′ . The sliding fractions 

of around 20% at critical state in Fig. 4c are similar to those for simulations of Toyoura sand using an 

interparticle friction coefficient of 0.25 (Huang et al., 2014b). 

Fig. 3 and Fig. 4 show that the samples at a similar 𝜓0 show similar trends; this remains true for other 

measures considered in this paper. Therefore, all subsequent figures contain data only for those three 

simulations with 𝑝0
′  = 500 kPa (𝜓0 = -0.0923, -0.0457, 0.0117). 

 

Evolution of energy during shearing 

To confirm that all sources of energy dissipation were correctly identified, and that the expressions for 

each energy component are appropriate and have been correctly implemented in the DEM code, the 

error in the energy balance at any time-step 𝛽, 𝛥𝐸, was calculated as 
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𝛥𝐸 = 𝐸𝑠𝑛
0 + 𝐸𝑠𝑡

0 + 𝐸𝑘𝑡
0 + 𝐸𝑘𝑟

0 +𝑊𝛽 − 𝐸𝑓
𝛽
− 𝐸𝑠𝑛

𝛽
− 𝐸𝑠𝑡

𝛽
− 𝐸𝑘𝑡

𝛽
− 𝐸𝑘𝑟

𝛽
  (37) 

In this expression, terms 1–4 represent the strain and kinetic energy at the start of shearing, i.e., at 

time-step 0. Terms 5–10 respectively indicate total boundary work input between time-steps 0 and 𝛽 

(equation (12)), friction dissipated between time-steps 0 and 𝛽 (equation (36)), normal (equation (34)) 

and tangential (equation (35)) components of strain energy at time-step 𝛽, and translational (equation 

(27)) and rotational (equation (28)) kinetic energies at time-step 𝛽 . This error was divided by 

boundary work and expressed as a percentage in Fig. 5. The percentage error is completely negligible, 

smaller than 1 x 10
-5

% at critical state; confirming that the system achieves an energy balance and that 

there is no spurious generation of energy as might occur in the case of numerical instability. Because 

the boundary work is zero at the start of shearing, and < 6 μJ at a strain of 0.001%, the percentage 

error on Fig. 5 appears large during the initial time-steps. However, the magnitude of the error is tiny: 

< 1.2 nJ at 1% axial strain, increasing to a maximum of 19 nJ at the end of shearing. 

Fig. 6 shows the evolution of the key energy terms with axial strain: boundary work, frictional 

dissipation and strain energy divided into normal and tangential/shear components. The translational 

and rotational kinetic energy terms are negligible: < 5 x 10
-7
 J at all strains. Boundary work and 

frictional dissipation are almost equal (Fig. 6a), supporting the assumption made by Schofield & 

Wroth (1968) that 𝛿𝑊𝑝 is dissipated entirely by friction. Prior research by Zamani & El Shamy 

(2013) supports the finding that interparticle frictional sliding is the main source of energy dissipation. 

Frictional dissipation is insensitive to 𝜓0  and continues indefinitely, even after the attainment of 

critical state. Conversely, the normal (Fig. 6b) and shear (Fig. 6c) components of strain energy 

become constant at large strain. The strain energy terms reach the same values irrespective of 𝜓0 at a 

fixed 𝑝0
′ . Changing 𝑝0

′  from 500 kPa to 1 MPa causes the critical state strain energy values to increase. 

The trends in strain energy closely match those in stress ratio shown in Fig. 3a: the strain energy terms 

for the densest sample rise sharply to a peak before decreasing to critical state, whereas the 

pronounced peak is absent for the loose sample. At critical state, the ratio of shear to normal strain 
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energy components converges to a value of around 0.0275; however, this ratio is likely to depend on 

factors such as the grading and µ. 

The total boundary work may be divided into distortional and volumetric work terms which are 

compared in Fig. 7. The distortional work increases continually because the increment of triaxial 

shear strain (equation (8)) is strictly positive, 𝑞 > 0 and 𝛿𝑊𝑑 = 𝑞𝛿휀𝑞. Conversely, the increment of 

volumetric work per unit volume is zero at critical state because the volumetric strain becomes 

constant (Fig. 3b). The trends for volumetric work parallel those for volumetric strain: dense samples 

dilate, i.e., 𝛿휀𝑣 < 0, so 𝛿𝑊𝑣 < 0 from equation (7) as 𝑝′> 0. However, as a loose sample contracts, 𝛿휀𝑣 

> 0 and 𝛿𝑊𝑣 > 0. Fig. 3b shows that both samples with negative 𝜓0 have a dilative response and these 

samples have 𝑊𝑣 < 0 at critical state. The loosest sample is overall contractive and its volumetric 

work is positive at critical state. The sum of the distortional and volumetric work terms is compared 

with the total boundary work in Fig. 7a. The absolute difference between the two is < 3 x 10
-5
 J for all 

simulations at all strains. 

 

Orientation of preferential frictional dissipation 

Fig. 6a shows the evolution of frictional dissipation during shearing. In Fig. 8, the total frictional 

dissipation at critical state is considered based on spatial orientation of the branch vectors associated 

with each contact using rose diagrams. In each Cartesian plane (x–y, x–z and y–z), 18 angular 

increments of 10° were considered between 0° and 180°. The length of each segment or bin in Fig. 8 

is proportional to the total frictional dissipation at critical state, where critical state is taken as the end 

of each simulation, for contacts with branch vectors oriented within that increment. The colour of 

each segment indicates the frictional dissipation which has occurred. 

For the horizontal x–y planes, frictional dissipation is isotropic (Fig. 8a). However, there is a clear 

preferential orientation for the x–z and y–z planes. More frictional dissipation occurs for contacts 

oriented at around 45° than for any other orientation. Those contacts which are oriented horizontally 

are responsible for least energy dissipation. Zhang et al. (2013) previously showed the development 
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of anisotropy in sliding dissipation during shearing using 2D simulations with rolling resistance. 

Interestingly, Wang & Yan (2012) reported that “the distribution of accumulated friction dissipation 

at large strains usually lacks a strongly preferred orientation”. The inclusion of particle crushing or the 

development of large shear bands in the simulations of Wang & Yan (2012) might explain this 

apparent contradiction. 

Although Fig. 8 is independent of 𝜓0, there is considerable variation in the equivalent rose diagrams 

prior to critical state. It is impractical to present sets of rose diagrams at a series of different axial 

strains. Instead, the coefficient of variation (𝑐𝑣), defined as the standard deviation divided by the 

mean, was computed for each set of 36 x–z and y–z bins at each axial strain. Rose diagrams such as 

those in Fig. 8a have 𝑐𝑣 ≈ 0. As the bins become increasingly dissimilar, 𝑐𝑣 increases. The variation of 

𝑐𝑣 with axial strain is shown in Fig. 9. At critical state, all samples have a similar 𝑐𝑣 of around 0.2. 𝑐𝑣 

increases most rapidly for the densest, most dilative sample. 

The reason for the existence of this preferential orientation for frictional dissipation is summarised in 

Fig. 10 and Fig. 11. The data are shown for only one simulation with 𝜓0 = -0.0457 as the other 

simulations show similar behaviour. Fig. 10 shows that the number of interparticle contacts and the 

mean normal or shear forces at a contact are all highest in the direction of the major principal stress. 

Fewest contacts are oriented horizontally and these contacts carry lower forces, on average, than 

contacts at other orientations. However, the average ratio of tangential to normal force and the sliding 

contact fraction show the opposite trend in Fig. 11: both measures are highest for horizontally-

oriented contacts and lowest for vertically-oriented contacts. This means that the horizontally-oriented 

contacts are most likely to slide but are relatively few in number, while the vertically-oriented 

contacts are most numerous but are least likely to slide. Thus, it makes sense that the largest number 

of sliding contacts, i.e., the number of contacts for which |𝑭𝑡,𝑜
𝛽
| > 𝜇|𝑭𝑛| in equation (29), would be 

found at some intermediate orientation between horizontal and vertical. The central column of Fig. 11 

shows this to be the case. Because sliding is a precondition for frictional dissipation, it thus follows 

that most frictional dissipation will occur at a similar orientation which explains the results presented 
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in Fig. 8. It is also noted that the preferred orientation for frictional dissipation is close to the 

orientation of the maximum shear stress: 45°. 

Satake (1982) proposed the second-order fabric tensor, Φ𝑝𝑞, as a useful measure of fabric anisotropy: 

Φ𝑝𝑞 = ∑ 𝒏𝑝
𝑗𝒏𝑞

𝑗𝑁𝑐
𝑗=1       (38) 

where 𝒏𝑝
𝑗
 is the unit contact normal for contact 𝑗. The deviatoric fabric is the difference between the 

maximum and minimum eigenvalues of the Φ𝑝𝑞  tensor. Fig. 12 shows the variation of deviatoric 

fabric with axial strain, along with the sliding deviatoric fabric: a variant computed only with the 

subset of sliding contacts. The deviatoric fabric matches previous observations, e.g., Huang et al. 

(2014b). The trends are similar to those for stress ratio (Fig. 3a): peak anisotropy increases with 

sample density. The anisotropy is much lower when restricted to sliding contacts only, with the 

deviatoric fabric being approximately halved at critical state. This might be inferred from the rose 

diagrams in Fig. 10 and Fig. 11: the leftmost column of Fig. 10 shows a strong preferential alignment 

for all contacts in the direction of the major principal stress whereas the middle column of Fig. 11 

shows a less pronounced preferential orientation. 

 

Dilatancy and rate of energy dissipation 

In order to compute plastic dilatancy and the work equations presented in the following subsection, 

the total strain was divided into elastic and plastic components according to equations (19)–(22). Very 

small strains are elastic. However, the elastic shear strains quickly become insignificant as shearing 

proceeds, showing that the common assumption of negligible elastic deviator strains, e.g., Cheng et 

al. (2004), is reasonable. The elastic proportion of volumetric strain is far more significant; this 

proportion becomes constant at critical state as does the total volumetric strain. Fig. 13 shows that 

there is a systematic trend in shear and volumetric strains with 𝜓0: at critical state, elastic strains are a 

lesser proportion of the total strains for denser samples. 
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The dilation rate was computed as 𝐷𝑝 =
𝛿 𝑣

𝑝

𝛿 𝑞
𝑝 based on these approximated plastic strain increments. A 

moving average filter was used to smooth the incremental strain data before plotting the (plastic) 

dilatancy in Fig. 14a. The Cam Clay flow rule, which approximates 𝐷𝑝 as 𝑀 − 𝜂, is also shown in 

Fig. 14a as dashed lines. Here 𝜂 is the exact value computed as 
𝑞

𝑝′
 using the DEM data. The error in 

this approximation increases with sample density: the dilatancy of the loose sample is very well 

described by 𝑀 − 𝜂 whereas the peak 𝐷𝑝 is poorly captured for the samples with 𝜓0 < 0. 

Fig. 14b shows the rate of change of frictional dissipation with respect to axial strain, using the same 

smoothing approach. The three simulations give very similar results except at small strain. This 

disparity at small strain is an artefact of the method used for sample preparation. Both samples with 

𝜓0 < 0 were prepared by isotropic compression using µ < 0.25. The interparticle friction coefficient 

was then increased to 0.25 before shearing. As discussed by Bernhardt et al. (2016), when this 

approach is used contacts are far from being in a sliding state at the start of shearing. When the same 

µ  value was used during sample preparation and shearing to create the loose sample, frictional 

dissipation could occur from the first time-step. Therefore, there is an initial jump for the loose 

sample in Fig. 14b. 

Summing 𝐷𝑝 and 𝜂 gives the dimensionless plastic energy dissipation rate (Jefferies & Been, 2006): 

the normalised rate of work per unit of plastic distortion. This is plotted in Fig. 14c. Consider the 

loose sample with 𝜓0 = 0.0117. The magnitude of the volumetric and distortional work terms is low 

compared to the dense samples (Fig. 7) as is the magnitude of the irrecoverable volumetric strain (Fig. 

3b). However, all three samples have similar boundary work input (Fig. 7a). Therefore, the rate of 

work input per unit of distortion is necessarily largest for the loose sample prior to critical state. 

 

Work equations used in constitutive models 

The various forms of the work equations are compared with the frictional dissipation, which is almost 

equal to the input boundary work (Fig. 6a), in Fig. 15. All become linear when plotted against 



21 
 

deviatoric strain, 휀𝑞, where 휀𝑞 =
2

3
(휀𝑧 −

𝑥+ 𝑦

2
) for these triaxial tests. The original Cam Clay work 

equation is almost unchanged if irreversible shear strains are assumed, i.e., if plastic strains are 

substituted by total strains. For the loosest sample shown in Fig. 15c, the work equations are all very 

similar and 𝑑𝛹2 ≈ 0. The differences are magnified as the samples become denser, as shown clearly in 

Fig. 16 in which the differences between the work equations and frictional dissipation are presented. 

For the densest sample (Fig. 16a), the Modified Cam Clay work equation substantially over-predicts 

the actual dissipation which occurs. The same occurs for original Cam Clay, but the difference is 

smaller. For both denser samples, 𝑑𝛹2  < 0 and 𝛿𝛷  > 𝐸𝑓
𝛽

 (the frictional dissipation). The 

thermodynamically-consistent work equation given as equation (25) matches the actual frictional 

dissipation almost perfectly. 

Theoretical flaws in the commonly-used work equations based on Cam Clay have been known for a 

long time (Houlsby, 1981). This DEM analysis, based on a simple model of spherical particles 

without numerical damping, rotational resistance or grain crushing, quantitatively shows a significant 

inaccuracy for simulations of dense sands. These findings differ from those of Cheng et al. (2004) 

who, using a different analytical approach, concluded that Modified Cam Clay describes the 

behaviour of crushable sands well apart from the lack of normality. 

 

Conclusions 

This paper was introduced with three main aims: to investigate the nature of energy dissipation during 

triaxial compression, to explore the existence of a preferential orientation for frictional dissipation and 

to assess commonly used constitutive models from the perspective of energy. The conclusions 

presented below correspond to these aims; these conclusions are based on an analysis of energy in a 

set of large-scale, highly polydisperse numerical samples which were sheared triaxially to critical 

state. The frictional dissipation and boundary work are almost equal regardless of sample density. 

Frictional dissipation is insensitive to 𝜓0  throughout shearing, while the normal and shear 
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components of strain energy attain constant values at critical state which are independent of 𝜓0. When 

the total boundary work was divided into distortional and volumetric work terms, it was found that the 

distortional work increases continually, even after the attainment of critical state, but the volumetric 

work reaches a steady value at large axial strain. 

The second aim of this paper was met by conclusively demonstrating the existence of a preferential 

orientation for frictional dissipation using rose diagrams. More frictional dissipation occurs for 

contacts oriented at around 45° to the major principal stress direction than for any other orientation, 

coinciding with the plane of maximum shear stress. This matches the orientation at which there is the 

largest number of sliding contacts. The underlying reason for this preferential orientation is the 

interplay between the number of interparticle contacts and the average ratio of tangential to normal 

force: contacts which are most numerous, aligned with the major principal stress, have the lowest 

average ratio of tangential to normal force and hence are least likely to slide. The anisotropy is much 

lower for the subset of sliding contacts than all contacts based on both deviatoric fabric calculations 

and rose diagrams. 

In the fulfilment of the third aim, it was found that elastic shear strains are negligible but the elastic 

proportion of volumetric strain is much more substantial. As sample density decreases, elastic strains 

become an increasingly significant proportion of the total strains at critical state. All computed work 

equations are linear when plotted against deviatoric strain. For loose samples, all work equations give 

a good description of the actual frictional dissipation which occurs during shearing. However, 

disparities increase with increasing sample density. The Modified Cam Clay work equation 

substantially over-predicts the frictional dissipation which occurs for the densest sample. The 

equivalent thermodynamically-consistent work equation (Collins & Hilder, 2002) matches the actual 

frictional dissipation almost perfectly. Based on the analysis presented in this paper, the adoption of a 

thermodynamically-consistent formulation is advised to ensure accuracy in modelling. This is a good 

example of how discrete element simulations have practical value as a tool to inform the development 

and application of continuum constitutive models. 
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Notation 

𝑐𝑣  Coefficient of variation, i.e., standard deviation divided by the mean 

𝑑𝛹2   Recoverable contribution to the plastic work from the free energy 

𝐷𝑝  Dilatancy computed using plastic strains 

𝑒, 𝑒0  Void ratio during shearing and after isotropic compression 

𝐸𝑓
𝛽−1

, 𝐸𝑓
𝛽

 Total frictional dissipation which has occurred at time-steps 𝛽 − 1 and 𝛽 

𝐸𝑓_𝑗
𝛽−1

, 𝐸𝑓_𝑗
𝛽

 Energy dissipated at contact 𝑗 at time-steps 𝛽 − 1 and 𝛽 

𝐸𝑘𝑟, 𝐸𝑘𝑟
0 , 𝐸𝑘𝑟

𝛽
 Rotational kinetic energy, energy at the start of shearing and at time-step 𝛽 

𝐸𝑘𝑡, 𝐸𝑘𝑡
0 , 𝐸𝑘𝑡

𝛽
 Translational kinetic energy, energy at the start of shearing and at time-step 𝛽 

𝐸𝑠𝑛, 𝐸𝑠𝑛
0 , 𝐸𝑠𝑛

𝛽
 Total normal strain energy, energy at the start of shearing and at time-step 𝛽 

𝐸𝑠𝑛_𝑗   Normal component of strain energy at contact 𝑗 

𝐸𝑠𝑡
𝛽−1

, 𝐸𝑠𝑡
𝛽

 Total tangential strain energy at time-steps 𝛽 − 1 and 𝛽 

http://www.archer.ac.uk/
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𝐸𝑠𝑡_𝑗
𝛽−1

, 𝐸𝑠𝑡_𝑗
𝛽

 Tangential component of strain energy at contact 𝑗 at time-steps 𝛽 − 1 and 𝛽 

𝑭𝑛  Normal component of the contact force 

𝑭𝑡   Tangential/shear component of the contact force 

𝑭𝑡_𝑜
𝛽

   Tangential force before applying Coulomb slip criterion 

𝐺  Sample shear modulus 

𝐺𝑝  Particle shear modulus 

𝑖  Identifier of a single particle in the system 

𝐼𝑖   Moment of inertia of particle 𝑖 

𝑗  Identifier of a single Hertzian contact in the system 

𝐾  Bulk modulus  

𝑘𝑡    Contact shear tangent stiffness 

𝑀   Critical state value of the stress ratio, 𝜂 

𝑚𝑖  Mass of particle 𝑖 

𝒏   Unit branch vector 

𝒏𝑝
𝑘   Unit contact normal for contact 𝑗 

𝑁𝑐   Total number of interparticle contacts in the simulation 

𝑁𝑝   Total number of particles in the simulation 

𝑝′   Mean effective stress 

𝑝0
′   Initial mean effective stress after isotropic compression 
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𝑝𝑐
′   Normal consolidation pressure 

𝑞  Deviator stress 

𝑟𝑎, 𝑟𝑏  Sphere radii 

𝑟𝑔  √
𝑟𝑎𝑟𝑏

𝑟𝑎+𝑟𝑏
  

𝑉𝛽  Sample volume at time-step 𝛽 

𝑣𝑖   Translational speed of particle 𝑖 

𝑊𝛽−1, 𝑊𝛽 Total boundary work input between time-steps 0 and 𝛽 − 1 or 𝛽 

𝑊𝑑
𝛽−1

, 𝑊𝑑
𝛽

 Total distortional work between time-steps 0 and 𝛽 − 1 or 𝛽 

𝑊𝑣
𝛽−1

, 𝑊𝑣
𝛽

 Total volumetric work between time-steps 0 and 𝛽 − 1 or 𝛽 

𝑥, 𝑦, 𝑧   Reference Cartesian axes 

𝑍  Coordination number  

𝑍𝑚  Mechanical coordination number 

𝛼𝑛  Interparticle overlap 

𝛽   Identifier of one time-step during shearing 

𝛿𝐸𝑓_𝑗
𝛽

  Friction dissipated at contact 𝑗 during time-step 𝛽 

𝛿𝐸𝑠𝑡_𝑗
𝛽

  Increment of tangential component of strain energy at contact 𝑗 during time-step 𝛽 

𝛿𝑊  Increment of boundary work input per unit volume 

𝛿𝑊𝑝  Increment of total input energy available for dissipation 

𝛿𝑊𝑑  Increment of distortional work per unit volume 
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𝛿𝑊𝑣  Increment of volumetric work per unit volume 

𝛿𝜶𝑡    Increment of relative shear displacement 

𝛿휀𝑞  Increment of triaxial shear strain 

𝛿휀𝑞
𝑒 , 𝛿휀𝑞

𝑝
 Elastic/plastic increments of triaxial shear strain 

𝛿휀𝑣   Increment of volumetric strain 

𝛿휀𝑣
𝑒 , 𝛿휀𝑣

𝑝
 Elastic/plastic increments of volumetric strain 

𝛿휀𝑥, 𝛿휀𝑦, 𝛿휀𝑧 Incremental normal strains 

𝛿𝛷   Dissipative part of the plastic work 

𝛥𝐸  Error term in the energy balance 

휀𝑞  Deviatoric strain 

휀𝑣  Volumetric strain 

휀𝑥 , 휀𝑦, 휀𝑧 Normal strains 

휀�̇�  Normal strain rate during triaxial compression 

𝜂  Stress ratio 𝑞/𝑝′ 

𝜅  Negative slope of the unloading–reloading line in (1 + 𝑒):ln(𝑝’) space 

µ   Interparticle friction coefficient 

𝜐  Sample Poisson’s ratio 

𝜐𝑝  Particle Poisson’s ratio 

𝜎𝑥
′ , 𝜎𝑦

′ , 𝜎𝑧
′ Effective normal stresses for the sample 
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𝜏𝑥𝑦, 𝜏𝑥𝑧, 𝜏𝑦𝑧 Effective shear stresses for the sample 

Φ𝑝𝑞  Second-order fabric tensor 

𝜓0  Initial state parameter after isotropic compression 

𝜔𝑖   Rotational speed of particle 𝑖 
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Figures 

 

Fig. 1. a) Particle size distribution by volume of the numerical grading used for this study compared 

with the size distribution for Dunkirk sand measured by sieving; b) the densest numerical sample after 

isotropic compression to 500 kPa 
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Fig. 2. Critical state line in a) 𝒆 − 𝐥𝐨𝐠(𝒑′) and b) 𝒒 − 𝒑′ spaces 

 

 

Fig. 3. Stress ratio, η, and percentage volumetric strain, εv, against axial strain (%) for all six triaxial 

simulations 
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Fig. 4. Coordination number (Z), mechanical coordination number (Zm) and sliding contact fraction 

against axial strain (%) 

 

 

Fig. 5. Error in the energy balance expressed as a percentage of the boundary work against axial strain 

(%) for those three simulations with p0’ = 500 kPa 
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Fig. 6. The evolution of four energy terms (J) against axial strain (%): a) energy dissipated by 

frictional sliding and boundary work; b) normal component of strain energy; c) shear component of 

strain energy 

 

 

Fig. 7. The evolution of boundary work, volumetric work, distortional work and the sum of 

volumetric and distortional work, all in J, against axial strain (%) 
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Fig. 8. Rose diagrams showing the total frictional dissipation (J) at critical state at each orientation. 

Rows a), b) and c) show projections onto the x–y, x–z and y–z planes, respectively. The lengths and 

colours of each segment indicate the total frictional dissipation for contacts at that orientation 
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Fig. 9. Coefficient of variation among the 36 bins for total frictional dissipation for projections onto 

the x–z and y–z planes against axial strain (%) 
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Fig. 10. Rose diagrams showing the number of interparticle contacts and the mean normal and shear 

forces (N) for one simulation with ψ0 = -0.0457. As in Fig. 8, rows a), b) and c) show projections onto 

the x–y, x–z and y–z planes, respectively 
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Fig. 11. Rose diagrams showing the mean ratio of shear to normal force, the number of sliding 

contacts and the fraction of sliding contacts at critical state for ψ0 = -0.0457. Rows a), b) and c) 

respectively show projections onto the x–y, x–z and y–z planes 
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Fig. 12. Deviatoric fabric of all contacts (o) and sliding contacts only (□) against axial strain (%) 

 

 

Fig. 13. The elastic proportions of the total shear and volumetric strains against axial strain (%) 
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Fig. 14. a) Dilation rate computed using plastic strains, D
p
; b) rate of change of frictional dissipation 

with respect to axial strain (J); c) dimensionless plastic energy dissipation rate, all plotted against 

axial strain (%) 

 

 

Fig. 15. Comparison of work equations and frictional dissipation, all in J, plotted against deviatoric 

strain (%) for ψ0 of a) -0.0923, b) -0.0457, and c) 0.0117. The superscript numerals in the legend 

indicate the corresponding lines on the figure 
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Fig. 16. Difference between the work equations and frictional dissipation (J) against deviatoric strain 

(%) for ψ0 of a) -0.0923, b) -0.0457, and c) 0.0117. A positive difference denotes an over-prediction 

of dissipation 


