88 research outputs found

    Indium free electrode, highly flexible, transparent and conductive for optoelectronic devices

    Get PDF
    WO3/Ag/WO3 multilayer structures were used as ITO free transparent electrode, transparent heat mirrors and transparent heaters. WO3/Ag/WO3 stacked layers were deposited by sequential sublimation, evaporation under vacuum. After optimization of Ag thickness (16 nm), they exhibit low sheet resistance (8 Ω/sq), high transmittance in the visible (TMax = 91.5%, averaged T400-700 = 80.6%) and high reflection in the near infrared and infrared regions. These values are optimal when it is used as transparent electrode but, as transparent heat mirrors 18 nm are better due to higher reflection in the NIR and IR. All these properties made possible to use them in different devices. When used as transparent anode in organic photovoltaic cells, they allow achieving performance similar to those obtained with ITO. Their transmission and reflection spectra show that they can also be employed as transparent heat mirrors. Similarly, studies dedicated to heating properties of the WO3/Ag/WO3 multilayer structures show that their performance are comparable to those obtained with another possible substituent to ITO, silver nanowires thin films

    A p21‐GFP zebrafish model of senescence for rapid testing of senolytics in vivo

    Get PDF
    Senescence drives the onset and severity of multiple ageing-associated diseases and frailty. As a result, there has been an increased interest in mechanistic studies and in the search for compounds targeting senescent cells, known as senolytics. Mammalian models are commonly used to test senolytics and generate functional and toxicity data at the level of organs and systems, yet this is expensive and time consuming. Zebrafish share high homology in genes associated with human ageing and disease. They can be genetically modified relatively easily. In larvae, most organs develop within 5 days of fertilisation and are transparent, which allows tracking of fluorescent cells in vivo in real time, testing drug off-target toxicity and assessment of cellular and phenotypic changes. Here, we have generated a transgenic zebrafish line that expresses green fluorescent protein (GFP) under the promoter of a key senescence marker, p21. We show an increase in p21:GFP+ cells in larvae following exposure to ionising radiation and with natural ageing. p21:GFP+ cells display other markers of senescence, including senescence-associated β-galactosidase and IL6. The observed increase in senescent cells following irradiation is associated with a reduction in the thickness of muscle fibres and mobility, two important ageing phenotypes. We also show that quercetin and dasatinib, two senolytics currently in clinical trials, reduce the number of p21:GFP+ cells, in a rapid 5-day assay. This model provides an important tool to study senescence in a living organism, allowing the rapid selection of senolytics before moving to more expensive and time-consuming mammalian systems

    Durvalumab with or without tremelimumab in patients with recurrent or metastatic head and neck squamous cell carcinoma: EAGLE, a randomized, open -label phase III study

    Get PDF
    Background: Targeting the programmed cell death protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1) axis has demonstrated clinical benefit in recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC). Combining immunotherapies targeting PD-L1 and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) has shown evidence of additive activity in several tumor types. This phase III study evaluated the efficacy of durvalumab (an anti-PD-L1 monoclonal antibody) or durvalumab plus tremelimumab (an anti-CTLA-4 monoclonal antibody) versus standard of care (SoC) in R/M HNSCC patients. Patients and methods: Patients were randomly assigned to receive 1 : 1 : 1 durvalumab (10 mg/kg every 2 weeks [q2w]), durvalumab plus tremelimumab (durvalumab 20 mg/kg q4w plus tremelimumab 1 mg/kg q4w 4, then durvalumab 10 mg/kg q2w), or SoC (cetuximab, a taxane, methotrexate, or a fluoropyrimidine). The primary end points were overall survival (OS) for durvalumab versus SoC, and OS for durvalumab plus tremelimumab versus SoC. Secondary end points included progression-free survival (PFS), objective response rate, and duration of response. Results: Patients were randomly assigned to receive durvalumab (n 1⁄4 240), durvalumab plus tremelimumab (n 1⁄4 247), or SoC (n 1⁄4 249). No statistically significant improvements in OS were observed for durvalumab versus SoC [hazard ratio (HR): 0.88; 95% confidence interval (CI): 0.72e1.08; P 1⁄4 0.20] or durvalumab plus tremelimumab versus SoC (HR: 1.04; 95% CI: 0.85e1.26; P 1⁄4 0.76). The 12-month survival rates (95% CI) were 37.0% (30.9e43.1), 30.4% (24.7e36.3), and 30.5% (24.7 e36.4) for durvalumab, durvalumab plus tremelimumab, and SoC, respectively. Treatment-related adverse events (trAEs) were consistent with previous reports. The most common trAEs (any grade) were hypothyroidism for durvalumab and durvalumab plus tremelimumab (11.4% and 12.2%, respectively), and anemia (17.5%) for SoC. Grade !3 trAE rates were 10.1%, 16.3%, and 24.2% for durvalumab, durvalumab plus tremelimumab, and SoC, respectively. Conclusion: There were no statistically significant differences in OS for durvalumab or durvalumab plus tremelimumab versus SoC. However, higher survival rates at 12 to 24 months and response rates demonstrate clinical activity for durvalumab

    Power management and control strategies for off-grid hybrid power systems with renewable energies and storage

    Get PDF
    This document is the Accepted Manuscript of the following article: Belkacem Belabbas, Tayeb Allaoui, Mohamed Tadjine, and Mouloud Denai, 'Power management and control strategies for off-grid hybrid power systems with renewable energies and storage', Energy Systems, September 2017. Under embargo. Embargo end date: 19 September 2018. The final publication is available at Springer via https://doi.org/10.1007/s12667-017-0251-y.This paper presents a simulation study of standalone hybrid Distributed Generation Systems (DGS) with Battery Energy Storage System (BESS). The DGS consists of Photovoltaic (PV) panels as Renewable Power Source (RPS), a Diesel Generator (DG) for power buck-up and a BESS to accommodate the surplus of energy, which may be employed in times of poor PV generation. While off-grid DGS represent an efficient and cost-effective energy supply solution particularly to rural and remote areas, fluctuations in voltage and frequency due to load variations, weather conditions (temperature, irradiation) and transmission line short-circuits are major challenges. The paper suggests a hierarchical Power Management (PM) and controller structure to improve the reliability and efficiency of the hybrid DGS. The first layer of the overall control scheme includes a Fuzzy Logic Controller (FLC) to adjust the voltage and frequency at the Point of Common Coupling (PCC) and a Clamping Bridge Circuit (CBC) which regulates the DC bus voltage. A maximum power point tracking (MPPT) controller based on FLC is designed to extract the optimum power from the PV. The second control layer coordinates among PV, DG and BESS to ensure reliable and efficient power supply to the load. MATLAB Simulink is used to implement the overall model of the off-grid DGS and to test the performance of the proposed control scheme which is evaluated in a series of simulations scenarios. The results demonstrated the good performance of the proposed control scheme and effective coordination between the DGS for all the simulation scenarios considered.Peer reviewedFinal Accepted Versio

    Mutation of Rubie, a Novel Long Non-Coding RNA Located Upstream of Bmp4, Causes Vestibular Malformation in Mice

    Get PDF
    Background: The vestibular apparatus of the vertebrate inner ear uses three fluid-filled semicircular canals to sense angular acceleration of the head. Malformation of these canals disrupts the sense of balance and frequently causes circling behavior in mice. The Epistatic circler (Ecl) is a complex mutant derived from wildtype SWR/J and C57L/J mice. Ecl circling has been shown to result from the epistatic interaction of an SWR-derived locus on chromosome 14 and a C57L-derived locus on chromosome 4, but the causative genes have not been previously identified. Methodology/Principal Findings: We developed a mouse chromosome substitution strain (CSS-14) that carries an SWR/J chromosome 14 on a C57BL/10J genetic background and, like Ecl, exhibits circling behavior due to lateral semicircular canal malformation. We utilized CSS-14 to identify the chromosome 14 Ecl gene by positional cloning. Our candidate interval is located upstream of bone morphogenetic protein 4 (Bmp4) and contains an inner ear-specific, long non-coding RNA that we have designated Rubie (RNA upstream of Bmp4 expressed in inner ear). Rubie is spliced and polyadenylated, and is expressed in developing semicircular canals. However, we discovered that the SWR/J allele of Rubie is disrupted by an intronic endogenous retrovirus that causes aberrant splicing and premature polyadenylation of the transcript. Rubie lies in the conserved gene desert upstream of Bmp4, within a region previously shown to be important for inner ear expression of Bmp4. We found that the expression patterns of Bmp4 and Rubie are nearly identical in developing inner ears

    A Late Role for bmp2b in the Morphogenesis of Semicircular Canal Ducts in the Zebrafish Inner Ear

    Get PDF
    BACKGROUND:The Bone Morphogenetic Protein (BMP) genes bmp2 and bmp4 are expressed in highly conserved patterns in the developing vertebrate inner ear. It has, however, proved difficult to elucidate the function of BMPs during ear development as mutations in these genes cause early embryonic lethality. Previous studies using conditional approaches in mouse and chicken have shown that Bmp4 has a role in semicircular canal and crista development, but there is currently no direct evidence for the role of Bmp2 in the developing inner ear. METHODOLOGY/PRINCIPAL FINDINGS:We have used an RNA rescue strategy to test the role of bmp2b in the zebrafish inner ear directly. Injection of bmp2b or smad5 mRNA into homozygous mutant swirl (bmp2b(-/-)) embryos rescues the early patterning defects in these mutants and the fish survive to adulthood. As injected RNA will only last, at most, for the first few days of embryogenesis, all later development occurs in the absence of bmp2b function. Although rescued swirl adult fish are viable, they have balance defects suggestive of vestibular dysfunction. Analysis of the inner ears of these fish reveals a total absence of semicircular canal ducts, structures involved in the detection of angular motion. All other regions of the ear, including the ampullae and cristae, are present and appear normal. Early stages of otic development in rescued swirl embryos are also normal. CONCLUSIONS/SIGNIFICANCE:Our findings demonstrate a critical late role for bmp2b in the morphogenesis of semicircular canals in the zebrafish inner ear. This is the first demonstration of a developmental role for any gene during post-embryonic stages of otic morphogenesis in the zebrafish. Despite differences in the early stages of semicircular canal formation between zebrafish and amniotes, the role of Bmp2 in semicircular canal duct outgrowth is likely to be conserved between different vertebrate species

    A Noncoding Point Mutation of Zeb1 Causes Multiple Developmental Malformations and Obesity in Twirler Mice

    Get PDF
    Heterozygous Twirler (Tw) mice develop obesity and circling behavior associated with malformations of the inner ear, whereas homozygous Tw mice have cleft palate and die shortly after birth. Zeb1 is a zinc finger protein that contributes to mesenchymal cell fate by repression of genes whose expression defines epithelial cell identity. This developmental pathway is disrupted in inner ears of Tw/Tw mice. The purpose of our study was to comprehensively characterize the Twirler phenotype and to identify the causative mutation. The Tw/+ inner ear phenotype includes irregularities of the semicircular canals, abnormal utricular otoconia, a shortened cochlear duct, and hearing loss, whereas Tw/Tw ears are severely malformed with barely recognizable anatomy. Tw/+ mice have obesity associated with insulin-resistance and have lymphoid organ hypoplasia. We identified a noncoding nucleotide substitution, c.58+181G>A, in the first intron of the Tw allele of Zeb1 (Zeb1Tw). A knockin mouse model of c.58+181G>A recapitulated the Tw phenotype, whereas a wild-type knockin control did not, confirming the mutation as pathogenic. c.58+181G>A does not affect splicing but disrupts a predicted site for Myb protein binding, which we confirmed in vitro. In comparison, homozygosity for a targeted deletion of exon 1 of mouse Zeb1, Zeb1ΔEx1, is associated with a subtle abnormality of the lateral semicircular canal that is different than those in Tw mice. Expression analyses of E13.5 Twirler and Zeb1ΔEx1 ears confirm that Zeb1ΔEx1 is a null allele, whereas Zeb1Tw RNA is expressed at increased levels in comparison to wild-type Zeb1. We conclude that a noncoding point mutation of Zeb1 acts via a gain-of-function to disrupt regulation of Zeb1Tw expression, epithelial-mesenchymal cell fate or interactions, and structural development of the inner ear in Twirler mice. This is a novel mechanism underlying disorders of hearing or balance
    corecore