8,575 research outputs found

    Azimuth laying system Patent

    Get PDF
    Inertial gimbal alignment system for spacecraft guidanc

    Keeping California cool: Recent cool community developments

    Get PDF
    In 2006, California introduced the Global Warming Solutions Act (Assembly Bill 32), which requires the state to reduce greenhouse gas emissions to 1990 levels by 2020. "Cool community" strategies, including cool roofs, cool pavements, cool walls and urban vegetation, have been identified as voluntary measures with potential to reduce statewide emissions. In addition, cool community strategies provide co-benefits for residents of California, such as reduced utility bills, improved air quality and enhanced urban livability. To achieve these savings, Lawrence Berkeley National Laboratory (LBNL) has worked with state and local officials, non-profit organizations, school districts, utilities, and manufacturers for 4 years to advance the science and implementation of cool community strategies. This paper summarizes the accomplishments of this program, as well as recent developments in cool community policy in California and other national and international efforts. We also outline lessons learned from these efforts to characterize successful programs and policies to be replicated in the future

    Phase dynamics of a multimode Bose condensate controlled by decay

    Full text link
    The relative phase between two uncoupled BE condensates tends to attain a specific value when the phase is measured. This can be done by observing their decay products in interference. We discuss exactly solvable models for this process in cases where competing observation channels drive the phases to different sets of values. We treat the case of two modes which both emit into the input ports of two beam splitters, and of a linear or circular chain of modes. In these latter cases, the transitivity of relative phase becomes an issue

    Photoelectric detection of polychromatic light

    Get PDF
    The problem of photoelectric detection of light is reexamined when the light is polychromatic and not strictly stationary, and when the frequency response of the detector has to be taken into account. It is shown that, whereas the one-photoelectron detection probability can always be expressed in a familiar form involving the expected light intensity, the same is not true of the twofold detection probability. In general, the photodetector does not count photons in any precise sense

    Signal-to-noise ratio of Gaussian-state ghost imaging

    Full text link
    The signal-to-noise ratios (SNRs) of three Gaussian-state ghost imaging configurations--distinguished by the nature of their light sources--are derived. Two use classical-state light, specifically a joint signal-reference field state that has either the maximum phase-insensitive or the maximum phase-sensitive cross correlation consistent with having a proper PP representation. The third uses nonclassical light, in particular an entangled signal-reference field state with the maximum phase-sensitive cross correlation permitted by quantum mechanics. Analytic SNR expressions are developed for the near-field and far-field regimes, within which simple asymptotic approximations are presented for low-brightness and high-brightness sources. A high-brightness thermal-state (classical phase-insensitive state) source will typically achieve a higher SNR than a biphoton-state (low-brightness, low-flux limit of the entangled-state) source, when all other system parameters are equal for the two systems. With high efficiency photon-number resolving detectors, a low-brightness, high-flux entangled-state source may achieve a higher SNR than that obtained with a high-brightness thermal-state source.Comment: 12 pages, 4 figures. This version incorporates additional references and a new analysis of the nonclassical case that, for the first time, includes the complete transition to the classical signal-to-noise ratio asymptote at high source brightnes

    On the influence of resonance photon scattering on atom interference

    Get PDF
    Here, the influence of resonance photon-atom scattering on the atom interference pattern at the exit of a three-grating Mach-Zehnder interferometer is studied. It is assumed that the scattering process does not destroy the atomic wave function describing the state of the atom before the scattering process takes place, but only induces a certain shift and change of its phase. We find that the visibility of the interference strongly depends on the statistical distribution of transferred momenta to the atom during the photon-atom scattering event. This also explains the experimentally observed (Chapman et al 1995 Phys. Rev. Lett. 75 2783) dependence of the visibility on the ratio d_p/\lambda_i = y'_{12} (2\pi/kd\lambda_i), where y'_{12} is distance between the place where the scattering event occurs and the first grating, k is the wave number of the atomic center-of-mass motion, dd is the grating constant and \lambda_i is the photon wavelength. Furthermore, it is remarkable that photon-atom scattering events happen experimentally within the Fresnel region, i.e. the near field region, associated with the first grating, which should be taken into account when drawing conclusions about the relevance of "which-way" information for the interference visibility.Comment: 9 pages, 1 figur

    Nonclassicality of Thermal Radiation

    Full text link
    It is demonstrated that thermal radiation of small occupation number is strongly nonclassical. This includes most forms of naturally occurring radiation. Nonclassicality can be observed as a negative weak value of a positive observable. It is related to negative values of the Margenau-Hill quasi-probability distribution.Comment: 3 pages, 3 figure

    Anderson localization of a Tonks-Girardeau gas in potentials with controlled disorder

    Get PDF
    We theoretically demonstrate features of Anderson localization in the Tonks-Girardeau gas confined in one-dimensional (1D) potentials with controlled disorder. That is, we investigate the evolution of the single particle density and correlations of a Tonks-Girardeau wave packet in such disordered potentials. The wave packet is initially trapped, the trap is suddenly turned off, and after some time the system evolves into a localized steady state due to Anderson localization. The density tails of the steady state decay exponentially, while the coherence in these tails increases. The latter phenomenon corresponds to the same effect found in incoherent optical solitons

    Influence of phonons on exciton-photon interaction and photon statistics of a quantum dot

    Full text link
    In this paper, we investigate, phonon effects on the optical properties of a spherical quantum dot. For this purpose, we consider the interaction of a spherical quantum dot with classical and quantum fields while the exciton of quantum dot interacts with a solid state reservoir. We show that phonons strongly affect the Rabi oscillations and optical coherence on first picoseconds of dynamics. We consider the quantum statistics of emitted photons by quantum dot and we show that these photons are anti-bunched and obey the sub-Poissonian statistics. In addition, we examine the effects of detuning and interaction of quantum dot with the cavity mode on optical coherence of energy levels. The effects of detuning and interaction of quantum dot with cavity mode on optical coherence of energy levels are compared to the effects of its interaction with classical pulse
    corecore