The signal-to-noise ratios (SNRs) of three Gaussian-state ghost imaging
configurations--distinguished by the nature of their light sources--are
derived. Two use classical-state light, specifically a joint signal-reference
field state that has either the maximum phase-insensitive or the maximum
phase-sensitive cross correlation consistent with having a proper P
representation. The third uses nonclassical light, in particular an entangled
signal-reference field state with the maximum phase-sensitive cross correlation
permitted by quantum mechanics. Analytic SNR expressions are developed for the
near-field and far-field regimes, within which simple asymptotic approximations
are presented for low-brightness and high-brightness sources. A high-brightness
thermal-state (classical phase-insensitive state) source will typically achieve
a higher SNR than a biphoton-state (low-brightness, low-flux limit of the
entangled-state) source, when all other system parameters are equal for the two
systems. With high efficiency photon-number resolving detectors, a
low-brightness, high-flux entangled-state source may achieve a higher SNR than
that obtained with a high-brightness thermal-state source.Comment: 12 pages, 4 figures. This version incorporates additional references
and a new analysis of the nonclassical case that, for the first time,
includes the complete transition to the classical signal-to-noise ratio
asymptote at high source brightnes