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Nonclassicality of a photon-subtracted Gaussian field
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We investigate the nonclassicality of a photon-subtracted Gaussian field, which was produced in a recent
experiment, using negativity of the Wigner function and the nonexistence of well-behaved pBditivetion.
We obtain the condition to see negativity of the Wigner function for the case including the mixed Gaussian
incoming field, the threshold photodetection and the inefficient homodyne measurement. We show how similar
the photon-subtracted state is to a superposition of coherent states.
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I. INTRODUCTION squeezed vacuum by Wengefral. [13]. They used a beam

The recent development of quantum optics has opened treplitter andla threshold detector to subtra_ct a photor) from_ the
possibility of generating and manipulating various nonclasSdueezed field, but the reconstructed Wigner function failed
sical light fields, which cannot be described by classicato show a negative valid3]. Itis thus timely to analyze the
theory, in a real laboratory. It is generally accepted that thé@eneration of a non-Gaussian state in relation to the status of
presence of a positive well-defin@function (a quasiprob- experiments. In particular, as such the state forms a starting
ability function in phase spad@]) signals the field classical point for distillation of a continuous-variable field for
[4]; otherwise the field is categorized as nonclassical. Aguantum-information processifd4] and may improve the
stronger constraint on nonclassicality is the presence of negefficiency of quantum teleportatidi 5], the study will be of
tivity in the Wigner function(another quasiprobability func- use. In this paper, we assess the nonclassicality of a photon-
tion) of the field[5]. While a Gaussian field may not have its subtracted Gaussian field and study how similar this state is
P function, its Wigner function never becomes negative. Foro a coherent-state superposition. We assess negativity of the

example, the squeezed vacuum state is represented by if¢igner function in conjunction with the nonexistence of the
Gaussian Wigner function while i8 function does not exist  positive P function.

[6]. It is also known that a Gaussian field remains Gaussian
by linear transformations which correspond to basic tools in Il. FIELD GENERATED BY SUBTRACTING A PHOTON

a quantum optics laboratory such as a phase shifter, a beam . . .
splitter, and a squeezét, 2]. We would like to consider what kind of state one pro-

Two better-known nonclassical fields are a squeezed staf@/C€S by eliminating one photon from a simple Gaussian
and a superposition of two separate coherent State\}mctlon.Asmgle-mode Gaussian field of its den_3|t_y opera_tor
(coherent-state superpositioiThe two kinds of states are P may be represented by Athe Weyl characteristic function
closely related to probably the most fundamental and intriguf16—19 defined asC(£&)=Tr[D(é)p]:
ing paradoxes in quantum theory, i.e., the Einstein-Podolsky-

Rosen paradox7] for a two-mode squeezed state and the c(é) = exp(— égz_ ﬁg_z) (1)
Schrédinger’s cat paradd8] for a coherent-state superposi- 27 2°)

tion. They are also known as useful resources for various ) )
schemes’ in quantum-information processing. A squeezeWhereA andB are determined by the quadrature variances of

state and a coherent-state superposition manifest differefft€ field. The displacement operator has been defined as
types of nonclassicality. Whereas a squeezed state is B(£€)=exp(éa'-£'a), wherea and &' are bosonic annihila-
Gaussian field, a coherent-state superposition is nonion and creation operators, respectively. Note also that the
Gaussian and shows a large amount of negativity in itsiensity operator can be obtained from the characteristic func-
Wigner function. There was an early attempt to relate the twqion as
states through quantum noise of arbitrary stref§thDakna
et al.[10] considered a connection between the two states by = 1 f Qe C(§)f)(— 9 )
subtracting a precise number of photons from a squeezed Iy '
2?;?('3;— ?r%ymaltiz ig%‘gﬁgn tg;ta:?)r;))lli Cq;t%nr:ug t?]t:tgo%ae?ez? 3§@hich ce;n be str_aightforwardly obtained using the identities
placement operator and adding photdf]. On the other (1/m) [ d*afa)(a]=1 and[20]
hand, it has been reported that by squeezing a single-photon 1 - -
state one can generate a state which has almost unit fidelity laXBl=— J d’£D(- £)(BID(é)|a)
to a coherent-state superposition of small amplitLidg. i

It is only very recently that a traveling non-Gaussian fieldwhere |«) is a coherent state of amplitude Even though
was experimentally generated by subtracting a photon from &q. (1) does not represent a very general Gaussian field,
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rotation and/or displacement operation brings any Gaussian N - 22 o o
field to this form. It is useful to start with Eq1) because it L= f C(7,8D4(- n)e ¥"%(1 - &) d*n d*¢.
is extremely challenging to produce a pure squeezed state
with AB=1 and the characteristic functiqd) allows us to  The characteristic function is then easily obtained using the
treat a single-mode Gaussian state of a mixed state. The Uptentity T{D(2)D(~7)]=752(Z-7):
certainty relation is given bjAB= 1 and the Gaussian state is
called squeezed when eithax 1 or B<1. _ ca(my + 1) 2
Let us consider the experiment by Wengeal.[13]. First Ci()=]1- (m, + 1)(mym, — 1)
of all, they produce a squeezed Gaussian state; then this

passes through a beam splitter with transmittivityt2, _ Gm+ 1 } exp{—}(n _ G ) 2
where the other input port is assumed to be served by a (my+ 1) (mym, = 1) 2\ 1 m+1/°"
vacuum. At the one output of mode 2, we conditionally mea- 2

sure a one-photon stal#),. The state obtained at the other - 1( - ) )g} (9)
output port of mode 1 was what Wenggral. produced as a 2 my+1/)”

non-Gaussian field in their experiment. We will evaluate th
Wigner function for this field of mode 1.

By beam splitting the squeezed Gaussian field whos
characteristic function is written 4%) and the vacuum of its
characteristic functiorcv(g)zexd—%|§|2), the characteristic

eBy Fourier transformation of the Weyl characteristic function
23], we obtain the Wigner function. Now, the first point we
re interested in is the negativity of the Wigner function. It is
clear that the Fourier transform of E(P) has the largest
negativity (if any existg at the origin of phase space and the

function for the output field of modes 1 and 2[il] value of the Wigner function at the point is
1 B-1 A-1
Coul 1, 6) = exr(— —xVxT> (3) Wi (0 + 10
> 2 O T B+Rr Tr AR (10
wherex=(7,,7,¢:, &) and the correlation matrix which has been obtained by substituting the paramé&rs

It is obvious that ifA>1 orB>1, i.e., the incoming Gauss-
n 0 ¢ 0 ian field is not squeezedV,(0) is positive everywhere. In
V= 0 n 0 c (4) order to find the exact condition for negativity in the Wigner
B cgc O0m O function, we assume thé&t<<1, B>1, and introduce positive
parameters=(A+1)/(1-A) andy=(B+1)/(B-1). Then the

0 c 0 m right-hand sidgRHS) of Eq. (10) becomes

with 2T—-x+y
n=TA+R, n,=TB+R, c;=tr(A-1), (T-x)(T+y)
_ _ _ whose denominator is always negative. The numerator be-
C=tr(B-1), m=RA+T, m=RB+T, (5  omes positive when the transmittivity satisfies
andT=t> andR=r2, AB-1
We then use the two-mode version of E8) for the den- T>— (12)

(1-AB-1)'

which always holds when the incoming Gaussian field is
Pout= ﬂ_lz J Cout(ﬂrg)lsl(_ 7])62(_ oy d2¢. (6) pureAB=1 (in other words, if the_ incoming (_3aussian field is
a pure squeezed state, the Wigner function always shows
negativity by subtracting a photon from).it
The P function of the field may be obtained using the
relation between its characteristic functi(ifj’) and the Weyl

sity operator of the output field:

The density operator for the field of mode 1 conditioned on
one-photon measurement for mode 2 is

p1=N X1poul 1) (7)  characteristic functioh23]:
2
Throughout the papes\ denotes the appropriate normaliza- CP(g) =C(ed™, (12
tion factor. For the case of E€7), With use of the characteristic functi¢f) and general Gauss-
1 [(m, + 1)(my + 1)]?2 ian integration, we find that the characteristic function is

= — = . (8 integrable wherin,—1)(m+1)-c?>0 fori=1,2. Bysubsti-
ALTrapoud| 12 2(mym, - 1) tuting the parameter®), we find the condition equivalent to

With the knowledge of the one-photon Fock-state expecta?!(A=1)>0 and Z(B-1)>0. So if the incoming field is

tion value of the displacement operaf@0,22 squeezed, it is not possible to integr&® and noP func-
tion exists. Considering the positivity of tliefunction, after
<1||5(_ Hl1) = e—lé\z/z(l -2, a Ii_ttlg algeb_ra with F_ourier transformati_on c_Jf tIﬁéc_h_arac-
teristic function, we find that thé function is positive as
the density operator is found to be long as it exists in this case. We conclude that the single-
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photon subtracted field is nonclassi¢al the sense of a lack 1
of an acceptabl® function) provided the original incoming 0.98 e
field is squeezed(However, the Wigner function does not /,-""
necessarily show negativity for all those nonclassical states ©0-26 P
unless the incoming Gaussian field was putdnless the > ¢ o4 ,_,"'
incoming Gaussian field is nonclassical we cannot generate ;- P
nonclassical state by subtracting a photon from it. g 0.92 L
This seemingly trivial result is not obvious at all as con- & ¢.9 /,./"
trasted by the nonclassicality of a field by adding a photon e
into a Gaussian field25,26. In distinction to the case of 0.88 P
subtracting a photon, the photon-added Gaussian state a o¢.gs /,.-’
ways shows negativity at the origin of the phase space 0.’5 0 85 0o 095 1
[26—-28. By adding a photon, a highly classical state such as T

a high-temperature thermal state becomes nonclassical,

showing negativity in its Wigner function. The realization of ~ FIG. 1. The fidelity between the photon-subtracted state and the
such a photon-added state is beyond the scope of the currgfigal coherent-state superposition with an ideal single-photon detec-
work but we may think of a possibility within cavity quan- tor (solid line) and a threshold detectddotted ling. The initial

tum electrodynamics or the phonon state of a driven ion in £AUeezing parameter is E(QB)=§-36 and the axis is the transmit-
cavity [28]. tivity of the beam splitterT=t~. The amplitude« of the ideal

coherent-state superposition is optimized for the maximum fidelity.
The optimized amplitude: ranges between 1.0%vhenT=0.8) and

) =M|a) - |- a)), (13 1.16 (whenT—1).
where J\/:llvl—exd—Zaz_], to assess its _fldel|ty to the  number distributions. The squeezed vacuum is a state with
photon-subtracted Gaussian state. It is straightforward to Cabnly an even number of photofi§] while the coherent-state
culate the characteristic function of the coherent-state SUPeEperposition(13) is a state with only an odd number of
position from Eq.(13) [6]. The closeness of two states, one photons[12]. By subtracting one photon from the squeezed
of which is a pure statfp) and the othefpure or mixedlis  gate, the two states may become closer to each other. We see
represented by its density operafoy is measured by the that the photon-subtracted squeezed field is close to the
fidelity 7 coherent-state superposition of small amplitudes. One reason
1 can be found again in their photon-number distributions. The
F={(¢|p|py=— J d2 CHOC,(Q) (14) photon:ngmber distribution offi) peaks aroupda|2_wh|le
™ that of p; is a monotonically decreasing function with regard
to the photon number. Thus, whenis small, the distribu-
tions become similar to each other. Of course, this check of
the photon-number distributions gives only a hint as the
hoton-number distribution does not necessarily convey all
e coherence properties of a quantum field.

We now introduce the coherent-superposition sfag

where the subscripts refer to the respective states.

The fidelity betweerp; and the coherent-state superposi-
tion (13) has been calculated from Eqg4), (13), and (14)
and plotted in Fig. 1. The incoming Gaussian field has bee
assumed a pure squeezed field. In Fig. 1, the solid line is th
optimized fidelity between the photon-subtracted state and
the ideal coherent-state superposition by an ideal single- Ill. EXPERIMENTAL REALITY

photon detector. The fidelity is very high #>0.99 regard- As can be seen in Fig. 1, the fidelity between the ideal
less of the transmittivity of the beam splitter when an idealonerent-state superposition and the photon-subtracted state
single-photon detector is used. The optimized amplitude ofs ot so sensitive to reflectivity of the beam splitter. This
the ideal coherent-state superposition as1.16 for the  seemingly good result is due to an ideal single-photon detec-
transmittivity close to unity. If the transmittivityl gets  (or assumed for the photon-subtracted state As men-
smaller, the amplitude of the ideal coherent-state superpOSfioned, the statd7) is what is wanted to achieve but the
tion, which maximizes the fidelity, also becomes smaller. Forygjjaple high-efficiency photodetector is not able to discern
example, the amplitude will be=1.02 (1.09 for T=0.8  one and any number of photons. Thus the state experimen-

(0.9.. However, the fidelity is not sensitive to the transmit- 5|y generated using such a threshold photodetector is
tivity of the beam splitter as shown in Fig. 1 because the

single-photon detector successfully subtracts only one pho- ~ °° ~

ton from the Gaussian state regardless of the transmittivity of pa= N2 Anlpoudm. (15

the beam splitter. In fact, the fidelity gets slightly better as n=1

the transmittivity becomes smaller, due to the fact that bothConsider the density operator for mode 1 of the output field,
of the states are reduced to the exact single-photon state as
T—0. R R R
It is interesting that the fidelity between the photon- pe= Trlpoud = 2 2(N[Poudn)2- (16)
subtracted fieldp; and the coherent-state superposition is =0

very high. This could have been guessed from their photonk is then clear from Eqs(15) and (16) that

o
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Pa=N(p; — %0|poud0)2) (17) exists and conclude that, for nonzero transmittivity of the
beam splitter, if and only if the incoming Gaussian field is
where squeezed, the any-number photon-subtracted pidtenon-
1 R classical. Again, thé® function criterion is weaker than the
p=— f Coul7,0)D1(- p)d?7y (18)  negativity criterion for the Wigner function.
™ We now consider how close the field obtained using the
and threshold detector is to the coherent-state superpositign
The optimized fidelity has been calculated using HS),
- 1 120 (14), and(20), and plotted in Fig. 1. It tells us that the state
2{0lpoud02 = e f Coul 7,9 1D1 (= ) &, which is obtained by subtracting any number of photons is
(19) similar to the coherent-state superposition only when the
transmittivity of the beam splitter is very high. For example,
Using C,u(7,£) as we have already discussed, we find thethe fidelity is higher than 90% whefi>0.87. In this case,

characteristic functioi€,(?) for p,: the chance of one-photon subtraction is more likely. Note
that the optimized amplitude ranges between 1.0@&hen
C.(0) :Ne—(n1§r2+n2(i2)/2|:l - 2 T=0.8 and 1.16(whenT—1) in Fig. 1.
V(my +1)(my + 1)
c? c? A. Inefficient detection and modal purity
X ex L 24 22 (20) .
2m+1)°" 2(my+1)”" Homodyne detection may be used to reconstruct the

o ) Wigner function for the fieldp,. Even though homodyne
The normalization factor is calculated as detectors are known for their high efficiency, the overall de-
tection efficiency was about 75% in Wengstral.s experi-
= . ment[13]. An imperfect detector is equivalent to a perfect

Vim+ )(mp+1) -2 detector with a beam splitter in frof29], where the trans-

fmittivity of the beam splitter is determined by the detection
efficiency . From Ref.[30], we note that the characteristic
function for the signal field passing through a beam splitter
where the other input port is served by the vacuum is

V(Mg +1)(mp + 1)

The Wigner function obtained by Fourier transformation o

the characteristic functiof0) is what Wengeeet al. would

have reconstructefil3] if the detection efficiency of their

experiment had been perfect and the modal purity unity.
L.et us n_ext consider the neggti_vity of the Wigner fqnction. Cim(0) = Ca v’?()Cv(\f':]i). (24)

By inspection of the characteristic function, we realize that

the Wigner function has the largest negativityany) at the ~ Substituting Eq(20) into Eq.(24), we find the characteristic

origin of the phase space and the value of the Wigner funcfunction for the detected field. The Fourier transform of the

tion at this point is characteristic function shows its largest negativity at the ori-
gin of the phase space and the value there is
W.(0) 2N { 1 2 }
= ,/_ - / b 1 1
: m |V V[N (my+ 1) - Cﬂ[nz(mz +1) - Cg] Win(0) o= == - —
(21) Vow V(v -R(A-1)/2)(w-R(B-1)/2)
- , (25
By partly substituting the paramete(S), we find that the
Wigner function becomes negative when wherev=T(A-1)»+1 andw=T(B-1)»+1. Under the as-
5 1 sumption(A-1)(B-1) <0, this becomes negative when the
> (22)  detection efficiency satisfies
(ny+A)(n,+B nyn
V(g )(ny ) AL 1 1 R
which becomes a criterion for the transmittivity n>- 2T(A- 1) - 2T(B-1) - 4_T'
A-(A+ DB+ 1)_ (23)  In particular, for a pure Gaussian incoming field, the condi-
3(A-1)(B-1) tion becomes
For a pure squeezed Gaussian incoming field, the condition 1+T
becomesT>1/3. It is interesting to note that regardless of n=> (26)

. ; L 4T

the degree of squeezirfigrovided it is not zerh we can see
the negativity in the Wigner function provided the transmit- The RHS is smaller than unitithe detection efficiencyy
tivity is larger than 1/3. <1) only whenT=1/3. This is in good agreement with the

Let us assess the degree of nonclassicality byPtfienc-  perfect detection case. So, in order to see negativity in the
tion criterion. With use of the relatiof12) between the char- Wigner function, the beam splitter has to have a transmittiv-
acteristic functions, we note that tRecharacteristic function ity larger than 1/3 first and then the detection efficiency has
for p, is integrable wherf(A-1)>0 andT(B-1)>0. We to satisfy the conditiori26). Wengeret al. employed a beam
have checked that thE function is semipositive when it splitter with T=0.88 in which case the detection has to be
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larger than a mere 53.4% to see negativity in the Wigner
function.

Another important factor which degrades the quantum ef-
fect of the photon-subtracted Gaussian state in a real experi-
ment is the modal purity factdd 3]. If the dark count rate of
the photodetector employed to subtract a photon is non-
negligible, the resulting state can be estimated in a mixture
of photon-subtracted squeezed state and squeezed state as

EW(a) + (1 - HWsda) (27)

whereW(«) is the Wigner function of the photon-subtracted
squeezed stateW{a) is the Wigner function of the
squeezed state, agdcorresponds to the modal purity factor,
which was 0.7, in Wengeet al’s experiment[13]. The
Wigner functions of the photon-subtracted Gaussian state
have been plotted for a number of different cases in Fig. 2. It
shows that the negativity of the Wigner function disappears
when both of the homodyne efficienayand the modal pu-
rity £ are considered taking relevant experimental values. We
suggest that either the homodyne efficiency should be im-
proved from 0.75 to 0.9 or the modal purity factor should be
improved from 0.7 to 0.9 to clearly observe the negativity of
the Wigner function. In these cases, the minimum negativity
will be —0.044 and -0.073, respectively.

IV. REMARKS

Re z

In this paper, we are interested in the nonclassicality of a
state produced by subtracting photons from a Gaussian field. rjg. 2. (color onling (a) The Wigner functionW(z) of a

Subtracting a photon does not transform a classical state in{ghoton-subtracted Gaussian state with a threshold detector for pho-
a nonclassical state whereas a nonclassical input remaifgn subtraction and ideal homodyne detectors for reconstruction of
nonclassical. This is in contrast to the case of adding a phahe wigner function wheriT=0.88 and ex{®?s)=2.36. The mini-
ton to a Gaussian field, in which case even a very chaotignum negativity is found a8V(0,0)=-0.52.(b) The Wigner func-
field transforms into a nonclassical st§#6—28. The non- tion of a photon-subtracted Gaussian state under the same condition
Gaussian state obtained by subtracting a photon from as(a) but with homodyne efficiency;=0.75. The minimum nega-
Gaussian field may show large negativity in its Wigner func-tivity has been reduced to -0.1%c) The Wigner function of a
tion. The condition to obtain the negativity is analyzed for aphoton-subtracted Gaussian state under the same conditi@ as
realistic case including the mixed-state input, threshold debut with homodyne efficiency;=0.75 and with the modal purity
tection, inefficient homodyne detection, and modal purity.factor 0.7. The negativity of the Wigner function has disappeared as
The non-Gaussian state analyzed in this paper is comparé(0)=0.075.
with a coherent-state superposition which may be extremely
useful for fundamental and application reasons. The comwhich considers nonlocality of a photon-subtracted squeezed
parison shows fidelity higher than 90% for the experimen-state.
tally relevant situation. We compare our analysis with a re-
cent experimental demonstratiofl3] of the photon- ACKNOWLEDGMENTS
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