227 research outputs found

    A small sealed Ta crucible for thermal analysis of volatile metallic samples

    Get PDF
    Differential thermal analysis on metallic alloys containing volatile elements can be highly problematic. Here we show how measurements can be performed in commercial, small-sample, equipment without modification. This is achieved by using a sealed Ta crucible, easily fabricated from Ta tubing and sealed in a standard arc furnace. The crucible performance is demonstrated by measurements on a mixture of Mg and MgB2_2, after heating up to 1470C^{\circ}{\rm C}. We also show data, measured on an alloy with composition Gd40_{40}Mg60_{60}, that clearly shows both the liquidus and a peritectic, and is consistent with published phase diagram data

    Clinical Recovery in First-Episode Psychosis

    Get PDF
    Introduction: Generally agreed outcome criteria in psychosis are required to evaluate the effectiveness of new treatment strategies. The aim of this study is to explore clinical recovery in first-episode patients, defined by meeting criteria for both symptomatic and functional remission. Method: In a sample of first-episode patients (N = 125), symptomatic and functional remission during the last 9 months of a 2-year follow-up period were examined, as well as recovery and its predictors. Results: Half the patients (52.0%) showed symptomatic remission and a quarter (26.4%) functional remission, while one-fifth (19.2%) met both criteria sets and were considered recovered. Recovery was significantly associated with short duration of untreated psychosis and better baseline functioning. Conclusion: Most functionally remitted patients were also symptomatically remitted, while a minority of symptomatically remitted patients were also functionally remitted. Treatment delay may affect chance of recovery

    Effect of an education program on improving knowledge of schizophrenia among parents of junior and senior high school students in Japan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Early detection and intervention in schizophrenia are important in improving quality of life after treatment and are major issues in psychiatric care. Therefore, it is necessary to increase knowledge of schizophrenia among the general public. Among parents of junior and senior high school students in Japan, we compared rates of correct answers for items on knowledge of schizophrenia and ability to discriminate this psychosis from other disorders on questionnaires given before and after viewing a web-based education program.</p> <p>Methods</p> <p>Questionnaires were distributed to 2,690 parents. The program was developed to help parents obtain a basic understanding of schizophrenia and to emphasize the necessity of early detection.</p> <p>Results</p> <p>Before the program, the rate of correct answers was 77% for items concerning basic knowledge of schizophrenia, 47% for "discrimination of schizophrenia symptoms," and 30% for "discrimination of prodromal symptoms." The program resulted in an improvement in basic knowledge of schizophrenia, discrimination of schizophrenia symptoms, and discrimination of prodromal symptoms (<it>P </it>< 0.001 for all).</p> <p>Conclusions</p> <p>Our web-based education program was useful in helping parents acquire a basic knowledge of schizophrenia and discriminate correctly the symptoms of schizophrenia.</p

    Antipsychotic treatment resistance in first-episode psychosis: prevalence, subtypes and predictors

    Get PDF
    Background: We examined longitudinally the course and predictors of treatment resistance in a large cohort of first-episode psychosis (FEP) patients from initiation of antipsychotic treatment. We hypothesized that antipsychotic treatment resistance is: (a) present at illness onset; and (b) differentially associated with clinical and demographic factors. Method: The study sample comprised 323 FEP patients who were studied at first contact and at 10-year follow-up. We collated clinical information on severity of symptoms, antipsychotic medication and treatment adherence during the follow-up period to determine the presence, course and predictors of treatment resistance. Results: From the 23% of the patients, who were treatment resistant, 84% were treatment resistant from illness onset. Multivariable regression analysis revealed that diagnosis of schizophrenia, negative symptoms, younger age at onset, and longer duration of untreated psychosis predicted treatment resistance from illness onset. Conclusions: The striking majority of treatment-resistant patients do not respond to first-line antipsychotic treatment even at time of FEP. Clinicians must be alert to this subgroup of patients and consider clozapine treatment as early as possible during the first presentation of psychosis

    Targetable Signaling Pathway Mutations Are Associated with Malignant Phenotype in IDH-Mutant Gliomas

    Get PDF
    Purpose: Isocitrate dehydrogenase (IDH) gene mutations occur in low-grade and high-grade gliomas. We sought to identify the genetic basis of malignant phenotype heterogeneity in IDH-mutant gliomas. Methods: We prospectively implanted tumor specimens from 20 consecutive IDH1-mutant glioma resections into mouse brains and genotyped all resection specimens using a CLIA-certified molecular panel. Gliomas with cancer driver mutations were tested for sensitivity to targeted inhibitors in vitro. Associations between genomic alterations and outcomes were analyzed in patients. Results: By 10 months, 8 of 20 IDH1-mutant gliomas developed intracerebral xenografts. All xenografts maintained mutant IDH1 and high levels of 2-hydroxyglutarate on serial transplantation. All xenograft-producing gliomas harbored “lineage-defining” mutations in CIC (oligodendroglioma) or TP53 (astrocytoma), and 6 of 8 additionally had activating mutations in PIK3CA or amplification of PDGFRA, MET, or N-MYC. Only IDH1 and CIC/TP53 mutations were detected in non–xenograft-forming gliomas (P = 0.0007). Targeted inhibition of the additional alterations decreased proliferation in vitro. Moreover, we detected alterations in known cancer driver genes in 13.4% of IDH-mutant glioma patients, including PIK3CA, KRAS, AKT, or PTEN mutation or PDGFRA, MET, or N-MYC amplification. IDH/CIC mutant tumors were associated with PIK3CA/KRAS mutations whereas IDH/TP53 tumors correlated with PDGFRA/MET amplification. Presence of driver alterations at progression was associated with shorter subsequent progression-free survival (median 9.0 vs. 36.1 months; P = 0.0011). Conclusion: A subset of IDH-mutant gliomas with mutations in driver oncogenes has a more malignant phenotype in patients. Identification of these alterations may provide an opportunity for use of targeted therapies in these patients.Koch Institute Dana Farber/Harvard Cancer Center Bridge Projec

    Mechanics Regulates Fate Decisions of Human Embryonic Stem Cells

    Get PDF
    Research on human embryonic stem cells (hESCs) has attracted much attention given their great potential for tissue regenerative therapy and fundamental developmental biology studies. Yet, there is still limited understanding of how mechanical signals in the local cellular microenvironment of hESCs regulate their fate decisions. Here, we applied a microfabricated micromechanical platform to investigate the mechanoresponsive behaviors of hESCs. We demonstrated that hESCs are mechanosensitive, and they could increase their cytoskeleton contractility with matrix rigidity. Furthermore, rigid substrates supported maintenance of pluripotency of hESCs. Matrix mechanics-mediated cytoskeleton contractility might be functionally correlated with E-cadherin expressions in cell-cell contacts and thus involved in fate decisions of hESCs. Our results highlighted the important functional link between matrix rigidity, cellular mechanics, and pluripotency of hESCs and provided a novel approach to characterize and understand mechanotransduction and its involvement in hESC function

    Emergence of Connectivity Motifs in Networks of Model Neurons with Short- and Long-term Plastic Synapses

    Get PDF
    Recent evidence in rodent cerebral cortex and olfactory bulb suggests that short-term dynamics of excitatory synaptic transmission is correlated to stereotypical connectivity motifs. It was observed that neurons with short-term facilitating synapses form predominantly reciprocal pairwise connections, while neurons with short-term depressing synapses form unidirectional pairwise connections. The cause of these structural differences in synaptic microcircuits is unknown. We propose that these connectivity motifs emerge from the interactions between short-term synaptic dynamics (SD) and long-term spike-timing dependent plasticity (STDP). While the impact of STDP on SD was shown in vitro, the mutual interactions between STDP and SD in large networks are still the subject of intense research. We formulate a computational model by combining SD and STDP, which captures faithfully short- and long-term dependence on both spike times and frequency. As a proof of concept, we simulate recurrent networks of spiking neurons with random initial connection efficacies and where synapses are either all short-term facilitating or all depressing. For identical background inputs, and as a direct consequence of internally generated activity, we find that networks with depressing synapses evolve unidirectional connectivity motifs, while networks with facilitating synapses evolve reciprocal connectivity motifs. This holds for heterogeneous networks including both facilitating and depressing synapses. Our study highlights the conditions under which SD-STDP might the correlation between facilitation and reciprocal connectivity motifs, as well as between depression and unidirectional motifs. We further suggest experiments for the validation of the proposed mechanism

    Mir-214-Dependent Regulation of the Polycomb Protein Ezh2 in Skeletal Muscle and Embryonic Stem Cells

    Get PDF
    Arthur Manuscript date: 2010 October 9Polycomb group (PcG) proteins exert essential functions in the most disparate biological processes. The contribution of PcG proteins to cell commitment and differentiation relates to their ability to repress transcription of developmental regulators in embryonic stem (ES) cells and in committed cell lineages, including skeletal muscle cells (SMC). PcG proteins are preferentially removed from transcribed regions, but the underlying mechanisms remain unclear. Here, PcG proteins are found to occupy and repress transcription from an intronic region containing the microRNA miR-214 in undifferentiated SMC. Differentiation coincides with PcG disengagement, recruitment of the developmental regulators MyoD and myogenin, and activation of miR-214 transcription. Once transcribed, miR-214 negatively feeds back on PcG by targeting the Ezh2 3′UTR, the catalytic subunit of the PRC2 complex. miR-214-mediated Ezh2 protein reduction accelerates SMC differentiation and promotes unscheduled transcription of developmental regulators in ES cells. Thus, miR-214 and Ezh2 establish a regulatory loop controlling PcG-dependent gene expression during differentiation.National Institute of Arthritis and Musculoskeletal and Skin Diseases (U.S.) (Intramural Research Program

    Induction of Olig2+ Precursors by FGF Involves BMP Signalling Blockade at the Smad Level

    Get PDF
    During normal development oligodendrocyte precursors (OPCs) are generated in the ventral spinal cord in response to Sonic hedgehog (Shh) signalling. There is also a second, late wave of oligodendrogenesis in the dorsal spinal cord independent of Shh activity. Two signalling pathways, controlled by bone morphogenetic protein and fibroblast growth factor (FGF), are active players in dorsal spinal cord specification. In particular, BMP signalling from the roof plate has a crucial role in setting up dorsal neural identity and its inhibition is sufficient to generate OPCs both in vitro and in vivo. In contrast, FGF signalling can induce OPC production from dorsal spinal cord cultures in vitro. In this study, we examined the cross-talk between mitogen-activated protein kinase (MAPK) and BMP signalling in embryonic dorsal spinal cord cultures at the SMAD1/5/8 (SMAD1) transcription factor level, the main effectors of BMP activity. We have previously shown that FGF2 treatment of neural precursor cells (NPCs) derived from rat E14 dorsal spinal cord is sufficient to generate OPCs in vitro. Utilising the same system, we now show that FGF prevents BMP-induced nuclear localisation of SMAD1-phosphorylated at the C-terminus (C-term-pSMAD1). This nuclear exclusion of C-term-pSMAD1 is dependent on MAPK activity and correlates with OLIG2 upregulation, the obligate transcription factor for oligodendrogenesis. Furthermore, inhibition of the MAPK pathway abolishes OLIG2 expression. We also show that SMAD4, which acts as a common partner for receptor-regulated Smads including SMAD1, associates with a Smad binding site in the Olig2 promoter and dissociates from it upon differentiation. Taken together, these results suggest that FGF can promote OPC generation from embryonic NPCs by counteracting BMP signalling at the Smad1 transcription factor level and that Smad-containing transcriptional complexes may be involved in direct regulation of the Olig2 promoter

    Short Term Synaptic Depression Imposes a Frequency Dependent Filter on Synaptic Information Transfer

    Get PDF
    Depletion of synaptic neurotransmitter vesicles induces a form of short term depression in synapses throughout the nervous system. This plasticity affects how synapses filter presynaptic spike trains. The filtering properties of short term depression are often studied using a deterministic synapse model that predicts the mean synaptic response to a presynaptic spike train, but ignores variability introduced by the probabilistic nature of vesicle release and stochasticity in synaptic recovery time. We show that this additional variability has important consequences for the synaptic filtering of presynaptic information. In particular, a synapse model with stochastic vesicle dynamics suppresses information encoded at lower frequencies more than information encoded at higher frequencies, while a model that ignores this stochasticity transfers information encoded at any frequency equally well. This distinction between the two models persists even when large numbers of synaptic contacts are considered. Our study provides strong evidence that the stochastic nature neurotransmitter vesicle dynamics must be considered when analyzing the information flow across a synapse
    corecore