102 research outputs found

    Blindness incidence in Germany - A population-based study from Württemberg-Hohenzollern

    Get PDF
    Few data on the incidence of blindness in Germany are available. We analysed causes of legal blindness for the region Württemberg-Hohenzollern (population 5.5 million) in order to help fill in this gap. Material and Methods: Population-based investigation on the incidence of legal blindness (visual acuity <1/50) based on materials from the social servies. Age-dependent blindness incidences were modelled via logistic regression models. Results: 647 blind persons were newly registered in 1994 (blindness incidence 11.6/100,000). The blindness incidence is moderate in infants (4.5/100,000) and decreases further during childhood. At the age of 20 years, the incidence again rises to the former level and remains relatively constant. After the age of 60 years, the incidence increases sharply: 5-year odds ratios are 1.76 (CI: 1.68-1.85) in women and 1.72 (CI: 1.60-1.84) in men. The blindness incidence is higher in women, 15.6/100,000, compared to 12.2/100,000 in men. The major causes of blindness are: macular degeneration, 3.92/100,000; diabetic retinopathy, 2.01/100,000; glaucoma, 1.6/100,000; high myopia, 0.77/100,000; optic atrophy, 0.68/100,000; central nervous system-triggered blindness; 0.56/100,000, and tapetoretinal degenerations, 0.52/100,000. Discussion: Due to monetary incentives for the blind persons, social service files offer accurate and complete data. Besides macular degeneration, glaucoma and dia betic retinopathy are major causes of blindness. Thus, this study suggests further blindness prevention activities for diabetic retinopathy and glaucoma

    Coupled free-carrier and exciton relaxation in optically excited semiconductors

    Get PDF
    The energy relaxation of coupled free-carrier and exciton populations in semiconductors after low-density ultrafast optical excitation is studied through a kinetic approach. The set of semiclassical Boltzmann equations, usually written for electron and hole populations only, is complemented by an additional equation for the exciton distribution. The equations are coupled by reaction terms describing phonon-mediated exciton binding and dissociation. All the other relevant scattering mechanisms, such as carrier-carrier, carrier-phonon, and exciton-phonon interactions, are also included. The resulting system of rate equations in reciprocal space is solved by an extended ensemble Monte Carlo method. As a first application, we show results for the dynamics of bulk GaAs in the range from 1 to ∼200 ps after photoexcitation. The build-up of an exciton population and its sensitivity to the excitation conditions are discussed in detail. As a consequence of the pronounced energy dependence of the LO-phonon-assisted transition probabilities between free-pair states and excitons, it is found that the efficiency of the exciton-formation process and the temporal evolution of the resulting population are sensitive to the excitation energy. We discuss the effects on luminescence experiments

    A class-wide phylogenetic assessment of Dothideomycetes

    Get PDF
    We present a comprehensive phylogeny derived from 5 genes, nucSSU, nucLSU rDNA, TEF1, RPB1 and RPB2, for 356 isolates and 41 families (six newly described in this volume) in Dothideomycetes. All currently accepted orders in the class are represented for the first time in addition to numerous previously unplaced lineages. Subclass Pleosporomycetidae is expanded to include the aquatic order Jahnulales. An ancestral reconstruction of basic nutritional modes supports numerous transitions from saprobic life histories to plant associated and lichenised modes and a transition from terrestrial to aquatic habitats are confirmed. Finally, a genomic comparison of 6 dothideomycete genomes with other fungi finds a high level of unique protein associated with the class, supporting its delineation as a separate taxon

    Limits of Life and the Habitability of Mars: The ESA Space Experiment BIOMEX on the ISS

    Get PDF
    BIOMEX (BIOlogy and Mars EXperiment) is an ESA/Roscosmos space exposure experiment housed within the exposure facility EXPOSE-R2 outside the Zvezda module on the International Space Station (ISS). The design of the multiuser facility supports—among others—the BIOMEX investigations into the stability and level of degradation of space-exposed biosignatures such as pigments, secondary metabolites, and cell surfaces in contact with a terrestrial and Mars analog mineral environment. In parallel, analysis on the viability of the investigated organisms has provided relevant data for evaluation of the habitability of Mars, for the limits of life, and for the likelihood of an interplanetary transfer of life (theory of lithopanspermia). In this project, lichens, archaea, bacteria, cyanobacteria, snow/permafrost algae, meristematic black fungi, and bryophytes from alpine and polar habitats were embedded, grown, and cultured on a mixture of martian and lunar regolith analogs or other terrestrial minerals. The organisms and regolith analogs and terrestrial mineral mixtures were then exposed to space and to simulated Mars-like conditions by way of the EXPOSE-R2 facility. In this special issue, we present the first set of data obtained in reference to our investigation into the habitability of Mars and limits of life. This project was initiated and implemented by the BIOMEX group, an international and interdisciplinary consortium of 30 institutes in 12 countries on 3 continents. Preflight tests for sample selection, results from ground-based simulation experiments, and the space experiments themselves are presented and include a complete overview of the scientific processes required for this space experiment and postflight analysis. The presented BIOMEX concept could be scaled up to future exposure experiments on the Moon and will serve as a pretest in low Earth orbit

    A window into fungal endophytism in Salicornia europaea: deciphering fungal characteristics as plant growth promoting agents

    Get PDF
    Aim Plant-endophytic associations exist only when equilibrium is maintained between both partners. This study analyses the properties of endophytic fungi inhabiting a halophyte growing in high soil salinity and tests whether these fungi are beneficial or detrimental when non-host plants are inoculated. Method Fungi were isolated from Salicornia europaea collected from two sites differing in salinization history (anthropogenic and naturally saline) and analyzed for plant growth promoting abilities and non-host plant interactions. Results Most isolated fungi belonged to Ascomycota (96%) including dematiaceous fungi and commonly known plant pathogens and saprobes. The strains were metabolically active for siderophores, polyamines and indole-3-acetic acid (mainly Aureobasidium sp.) with very low activity for phosphatases. Many showed proteolytic, lipolytic, chitinolytic, cellulolytic and amylolytic activities but low pectolytic activity. Different activities between similar fungal species found in both sites were particularly seen for Epiccocum sp., Arthrinium sp. and Trichoderma sp. Inoculating the non-host Lolium perenne with selected fungi increased plant growth, mainly in the symbiont (Epichloë)-free variety. Arthrinium gamsii CR1-9 and Stereum gausapatum ISK3-11 were most effective for plant growth promotion. Conclusions This research suggests that host lifestyle and soil characteristics have a strong effect on endophytic fungi, and environmental stress could disturb the plant-fungi relations. In favourable conditions, these fungi may be effective in facilitating crop production in non-cultivable saline lands

    The Vein Patterning 1 (VEP1) Gene Family Laterally Spread through an Ecological Network

    Get PDF
    Lateral gene transfer (LGT) is a major evolutionary mechanism in prokaryotes. Knowledge about LGT— particularly, multicellular— eukaryotes has only recently started to accumulate. A widespread assumption sees the gene as the unit of LGT, largely because little is yet known about how LGT chances are affected by structural/functional features at the subgenic level. Here we trace the evolutionary trajectory of VEin Patterning 1, a novel gene family known to be essential for plant development and defense. At the subgenic level VEP1 encodes a dinucleotide-binding Rossmann-fold domain, in common with members of the short-chain dehydrogenase/reductase (SDR) protein family. We found: i) VEP1 likely originated in an aerobic, mesophilic and chemoorganotrophic α-proteobacterium, and was laterally propagated through nets of ecological interactions, including multiple LGTs between phylogenetically distant green plant/fungi-associated bacteria, and five independent LGTs to eukaryotes. Of these latest five transfers, three are ancient LGTs, implicating an ancestral fungus, the last common ancestor of land plants and an ancestral trebouxiophyte green alga, and two are recent LGTs to modern embryophytes. ii) VEP1's rampant LGT behavior was enabled by the robustness and broad utility of the dinucleotide-binding Rossmann-fold, which provided a platform for the evolution of two unprecedented departures from the canonical SDR catalytic triad. iii) The fate of VEP1 in eukaryotes has been different in different lineages, being ubiquitous and highly conserved in land plants, whereas fungi underwent multiple losses. And iv) VEP1-harboring bacteria include non-phytopathogenic and phytopathogenic symbionts which are non-randomly distributed with respect to the type of harbored VEP1 gene. Our findings suggest that VEP1 may have been instrumental for the evolutionary transition of green plants to land, and point to a LGT-mediated ‘Trojan Horse’ mechanism for the evolution of bacterial pathogenesis against plants. VEP1 may serve as tool for revealing microbial interactions in plant/fungi-associated environments
    corecore