999 research outputs found

    Interferometric near-field characterization of plasmonic slot waveguides in single- and poly-crystalline gold films

    Full text link
    Plasmonic waveguides are a promising platform for integrated nanophotonic circuits and nanoscale quantum optics. Their use is however often hampered by the limited propagation length of the guided surface plasmon modes. A detailed understanding of the influence of the material quality and the waveguide geometry on the complex mode index is therefore crucial. In this letter, we present interferometric near-field measurements at telecommunication wavelength on plasmonic slot waveguides fabricated by focused ion beam milling in single- and poly-crystalline gold films. We observe a significantly better performance of the slot waveguides in the single-crystalline gold film for slot widths below 100nm100\,\mathrm{nm}. In contrast for larger slot widths, both gold films give rise to comparable mode propagation lengths. Our experimental observations indicate that the nature of the dominant loss channel changes with increasing gap size from Ohmic to leakage radiation. Our experimental findings are reproduced by three dimensional numerical calculations.Comment: 4 figure

    The dynamics of magnetic ordering in a natural hemo-ilmenite solid solution

    Get PDF
    We investigated the micromagnetic properties of hemo-ilmenite particles in an alluvial soil. All magnetic accessory minerals except the weathering resistant hemo-ilmenite grains were removed from the soil matrix by chemical treatment with concentrated acid followed by magnetic separation. X-ray diffraction revealed hemo-ilmenite grains with single crystal properties and an ilmenite mole fraction of y = 0.86. Magnetization versus applied magnetic field plots in a temperature range between 6 and 300 K were recorded in order to study the hysteresis and the exchange properties. In addition, field and frequency-dependent AC susceptibility measurements were performed with and without a DC bias field in order to analyse the dynamic magnetization of the sample down to 3 K. The hemo-ilmenite particles are considered as a mixed system with nano-sized cation-ordered areas (COA) and cation-disordered areas (CDA), which differ in their local Fe(III) concentration. Ferrimagnetic single-domain order in the Fe(III)-enriched CDA started at about 220 K. Upon cooling gradual transdomain transformation generates multidomain order. A maximum in the blocking distribution was reached at 44 K, followed by the onset of spin-glass dynamics. At lower temperature, blocking of superparamagnetic clusters in the COA created antiferromagnetic (AFM) ordering, which became more prominent with decreasing temperature. The interaction between the spin-glass like CDA and the AFM areas was documented by the onset of exchange bias at T < 20 K. The occurrence of exchange bias as well as spin-glass dynamics in the hemo-ilmenite grains is probably an effect of the inhomogeneity of the local Fe(III) concentration. This effect leaves a magnetically competitive regime with areas showing ilmenite-like magnetic properties, and Fe(III) rich disordered areas with magnetic long-range ordering up to 220 K and frustration near the ordering temperature of ilmenit

    Implementation of mean-timing and subsequent logic functions on an FPGA

    Full text link
    This article describes the implementation of a mean-timer and coincidence logic on a Virtex-5 FPGA for trigger purposes in a particle physics experiment. The novel feature is that the mean-timing and the coincidence logic are not synchronized with a clock which allows for a higher resolution of approximately 400 ps, not limited by a clock frequency.Comment: 15 pages, 11 figure

    Freestanding metasurfaces for optical frequencies

    Full text link
    We present freestanding metasurfaces operating at optical frequencies with a total thickness of only 40\,nm. The metasurfaces are fabricated by focused ion beam milling of nanovoids in a carbon film followed by thermal evaporation of gold and plasma ashing of the carbon film. As a first example, we demonstrate a metasurface lens based on resonant V-shaped nanovoids with a focal length of 1\,mm. The second example is a metasurface phase-plate consisting of appropriately oriented rectangular nanovoids that transforms a Gaussian input beam into a Laguerre-Gaussian LG1,0{LG_{-1,0}} mode

    The Longitudinal Polarimeter at HERA

    Get PDF
    The design, construction and operation of a Compton back-scattering laser polarimeter at the HERA storage ring at DESY are described. The device measures the longitudinal polarization of the electron beam between the spin rotators at the HERMES experiment with a fractional systematic uncertainty of 1.6%. A measurement of the beam polarization to an absolute statistical precision of 0.01 requires typically one minute when the device is operated in the multi-photon mode. The polarimeter also measures the polarization of each individual electron bunch to an absolute statistical precision of 0.06 in approximately five minutes. It was found that colliding and non-colliding bunches can have substantially different polarizations. This information is important to the collider experiments H1 and ZEUS for their future longitudinally polarized electron program because those experiments use the colliding bunches only.Comment: 21 pages (Latex), 14 figures (EPS

    Suppression of Richtmyer-Meshkov instability via special pairs of shocks and phase transitions

    Full text link
    The classical Richtmyer-Meshkov instability is a hydrodynamic instability characterizing the evolution of an interface following shock loading. In contrast to other hydrodynamic instabilities such as Rayleigh-Taylor, it is known for being unconditionally unstable: regardless of the direction of shock passage, any deviations from a flat interface will be amplified. In this article, we show that for negative Atwood numbers, there exist special sequences of shocks which result in a nearly perfectly suppressed instability growth. We demonstrate this principle computationally and experimentally with stepped fliers and phase transition materials. A fascinating immediate corollary is that in specific instances a phase transitioning material may self-suppress RMI

    Enhanced activation of the left inferior frontal gyrus in deaf and dyslexic adults during rhyming

    Get PDF
    Hearing developmental dyslexics and profoundly deaf individuals both have difficulties processing the internal structure of words (phonological processing) and learning to read. In hearing non-impaired readers, the development of phonological representations depends on audition. In hearing dyslexics, many argue, auditory processes may be impaired. In congenitally profoundly deaf individuals, auditory speech processing is essentially absent. Two separate literatures have previously reported enhanced activation in the left inferior frontal gyrus in both deaf and dyslexic adults when contrasted with hearing non-dyslexics during reading or phonological tasks. Here, we used a rhyme judgement task to compare adults from these two special populations to a hearing non-dyslexic control group. All groups were matched on non-verbal intelligence quotient, reading age and rhyme performance. Picture stimuli were used since this requires participants to generate their own phonological representations, rather than have them partially provided via text. By testing well-matched groups of participants on the same task, we aimed to establish whether previous literatures reporting differences between individuals with and without phonological processing difficulties have identified the same regions of differential activation in these two distinct populations. The data indicate greater activation in the deaf and dyslexic groups than in the hearing non-dyslexic group across a large portion of the left inferior frontal gyrus. This includes the pars triangularis, extending superiorly into the middle frontal gyrus and posteriorly to include the pars opercularis, and the junction with the ventral precentral gyrus. Within the left inferior frontal gyrus, there was variability between the two groups with phonological processing difficulties. The superior posterior tip of the left pars opercularis, extending into the precentral gyrus, was activated to a greater extent by deaf than dyslexic participants, whereas the superior posterior portion of the pars triangularis extending into the ventral pars opercularis, was activated to a greater extent by dyslexic than deaf participants. Whether these regions play differing roles in compensating for poor phonological processing is not clear. However, we argue that our main finding of greater inferior frontal gyrus activation in both groups with phonological processing difficulties in contrast to controls suggests greater reliance on the articulatory component of speech during phonological processing when auditory processes are absent (deaf group) or impaired (dyslexic group). Thus, the brain appears to develop a similar solution to a processing problem that has different antecedents in these two populations

    Evidence for Quark-Hadron Duality in the Proton Spin Asymmetry A1A_1

    Full text link
    Spin-dependent lepton-nucleon scattering data have been used to investigate the validity of the concept of quark-hadron duality for the spin asymmetry A1A_1. Longitudinally polarised positrons were scattered off a longitudinally polarised hydrogen target for values of Q2Q^2 between 1.2 and 12 GeV2^2 and values of W2W^2 between 1 and 4 GeV2^2. The average double-spin asymmetry in the nucleon resonance region is found to agree with that measured in deep-inelastic scattering at the same values of the Bjorken scaling variable xx. This finding implies that the description of A1A_1 in terms of quark degrees of freedom is valid also in the nucleon resonance region for values of Q2Q^2 above 1.6 GeV2^2.Comment: 5 pages, 1 eps figure, table added, new references added, in print in Phys. Rev. Let
    corecore