3,965 research outputs found

    Measuring air movement in small spaces: understanding air movement in historic bookshelves

    Get PDF
    The National Trust has tested ventilation holes in bookshelves to encourage air movement behind books as a possible strategy to improve the environment in these microclimates. This could be used as a preventive measure for mould development. Air movement was measured in historic bookshelves to understand what causes air movement and the impact of ventilation holes on the shelves behind books. Three libraries in National Trust properties were used as case studies. It was found that pressure differential and stack effect are two mechanisms contributing to the air velocities measured. However, several variables are believed to influence air movement in these small spaces, and further research is needed to understand its influence on mould development

    First Report of Transmission of Soybean Mosaic Virus and Alfalfa Mosaic Virus by Aphis glycines in the New World

    Get PDF
    Originating text in English.Citation: Hill, J. H., Alleman, R., Hogg, D. B., Grau, C. R. (2001). First Report of Transmission of Soybean Mosaic Virus and Alfalfa Mosaic Virus by Aphis glycines in the New World. Plant Disease, 85(5), 561-561

    Modelling and performance evaluation of storage enclosures

    Get PDF
    A model of moisture and heat transport was used to study the performance of storage enclosures. This paper examines several modelling approaches and presents the benefits and drawbacks of a ‘simple’ model which requires few input parameters. As a result, users do not need to measure many material properties, but some quality of the predictions is lost. The model is used to explore the balance of moisture exchange through ventilation holes and diffusion, the presence of buffering material inside enclosures and the effect of wall thickness. The predictions correspond well to experimental data measured in storage enclosures and a historic building. However, in order to bring modelling to the point where it can be used to engineer better enclosures, further research is needed. Experimental validation needs to be extensive and the limits of applicability of the model need to be clearly identified

    AMPA Receptor Phosphorylation and Synaptic Colocalization on Motor Neurons Drive Maladaptive Plasticity below Complete Spinal Cord Injury.

    Get PDF
    Clinical spinal cord injury (SCI) is accompanied by comorbid peripheral injury in 47% of patients. Human and animal modeling data have shown that painful peripheral injuries undermine long-term recovery of locomotion through unknown mechanisms. Peripheral nociceptive stimuli induce maladaptive synaptic plasticity in dorsal horn sensory systems through AMPA receptor (AMPAR) phosphorylation and trafficking to synapses. Here we test whether ventral horn motor neurons in rats demonstrate similar experience-dependent maladaptive plasticity below a complete SCI in vivo. Quantitative biochemistry demonstrated that intermittent nociceptive stimulation (INS) rapidly and selectively increases AMPAR subunit GluA1 serine 831 phosphorylation and localization to synapses in the injured spinal cord, while reducing synaptic GluA2. These changes predict motor dysfunction in the absence of cell death signaling, suggesting an opportunity for therapeutic reversal. Automated confocal time-course analysis of lumbar ventral horn motor neurons confirmed a time-dependent increase in synaptic GluA1 with concurrent decrease in synaptic GluA2. Optical fractionation of neuronal plasma membranes revealed GluA2 removal from extrasynaptic sites on motor neurons early after INS followed by removal from synapses 2 h later. As GluA2-lacking AMPARs are canonical calcium-permeable AMPARs (CP-AMPARs), their stimulus- and time-dependent insertion provides a therapeutic target for limiting calcium-dependent dynamic maladaptive plasticity after SCI. Confirming this, a selective CP-AMPAR antagonist protected against INS-induced maladaptive spinal plasticity, restoring adaptive motor responses on a sensorimotor spinal training task. These findings highlight the critical involvement of AMPARs in experience-dependent spinal cord plasticity after injury and provide a pharmacologically targetable synaptic mechanism by which early postinjury experience shapes motor plasticity

    The effective mass of two--dimensional 3He

    Full text link
    We use structural information from diffusion Monte Carlo calculations for two--dimensional 3He to calculate the effective mass. Static effective interactions are constructed from the density-- and spin structure functions using sumrules. We find that both spin-- and density-- fluctuations contribute about equally to the effective mass. Our results show, in agreement with recent experiments, a flattening of the single--particle self--energy with increasing density, which eventually leads to a divergent effective mass.Comment: 4 pages, accepted in PR

    The Influence of Water Activity and Air Movement in Preventing Mould in Historic Materials

    Get PDF

    Phosphocholine-Modified Lipooligosaccharides of Haemophilus influenzae Inhibit ATP-Induced IL-1beta Release by Pulmonary Epithelial Cells

    Get PDF
    Phosphocholine-modified bacterial cell wall components are virulence factors enabling immune evasion and permanent colonization of the mammalian host, by mechanisms that are poorly understood. Recently, we demonstrated that free phosphocholine (PC) and PC-modified lipooligosaccharides (PC-LOS) from Haemophilus influenzae, an opportunistic pathogen of the upper and lower airways, function as unconventional nicotinic agonists and efficiently inhibit the ATP-induced release of monocytic IL-1beta. We hypothesize that H. influenzae PC-LOS exert similar effects on pulmonary epithelial cells and on the complex lung tissue. The human lung carcinoma-derived epithelial cell lines A549 and Calu-3 were primed with lipopolysaccharide from Escherichia coli followed by stimulation with ATP in the presence or absence of PC or PC-LOS or LOS devoid of PC. The involvement of nicotinic acetylcholine receptors was tested using specific antagonists. We demonstrate that PC and PC-LOS efficiently inhibit ATP-mediated IL-1beta release by A549 and Calu-3 cells via nicotinic acetylcholine receptors containing subunits alpha7, alpha9, and/or alpha10. Primed precision-cut lung slices behaved similarly. We conclude that H. influenzae hijacked an endogenous anti-inflammatory cholinergic control mechanism of the lung to evade innate immune responses of the host. These findings may pave the way towards a host-centered antibiotic treatment of chronic airway infections with H. influenzae

    Fabrication of Robust Thermal Transition Modules and First Cryogenic Experiment with the Refurbished COLDDIAG

    Get PDF
    Two sets of thermal transition modules as a key component for the COLDDIAG (cold vacuum chamber for beam heat load diagnostics) refurbishment were manufactured, based on the previous design study. The modules are installed in the existing COLDDIAG cryostat and tested with an operating temperature of approximately 50 K at both a cold bore and a thermal shield. This cool-down experiment is a preliminary investigation aiming at beam heat-load studies at the FCC-hh where the beam screens will be operated at almost the same temperature. In this contribution, we report the fabrication processes of the mechanically robust transition modules and the first thermal measurement results with the refurbished COLDDIAG in a cryogenic environment. The static heat load in the refurbished cryostat remains unchanged, compared to that in the former one (4-K cold bore and 50-K shield with thin transitions), despite the increase in the transition thickness. It originates from the identical temperature at the cold bore and the shield, which can theoretically allow the heat intakes by thermal conduction and radiation between them to vanish
    • …
    corecore