323 research outputs found

    An approach to computing downward closures

    Full text link
    The downward closure of a word language is the set of all (not necessarily contiguous) subwords of its members. It is well-known that the downward closure of any language is regular. While the downward closure appears to be a powerful abstraction, algorithms for computing a finite automaton for the downward closure of a given language have been established only for few language classes. This work presents a simple general method for computing downward closures. For language classes that are closed under rational transductions, it is shown that the computation of downward closures can be reduced to checking a certain unboundedness property. This result is used to prove that downward closures are computable for (i) every language class with effectively semilinear Parikh images that are closed under rational transductions, (ii) matrix languages, and (iii) indexed languages (equivalently, languages accepted by higher-order pushdown automata of order 2).Comment: Full version of contribution to ICALP 2015. Comments welcom

    Finite Automata for the Sub- and Superword Closure of CFLs: Descriptional and Computational Complexity

    Full text link
    We answer two open questions by (Gruber, Holzer, Kutrib, 2009) on the state-complexity of representing sub- or superword closures of context-free grammars (CFGs): (1) We prove a (tight) upper bound of 2O(n)2^{\mathcal{O}(n)} on the size of nondeterministic finite automata (NFAs) representing the subword closure of a CFG of size nn. (2) We present a family of CFGs for which the minimal deterministic finite automata representing their subword closure matches the upper-bound of 22O(n)2^{2^{\mathcal{O}(n)}} following from (1). Furthermore, we prove that the inequivalence problem for NFAs representing sub- or superword-closed languages is only NP-complete as opposed to PSPACE-complete for general NFAs. Finally, we extend our results into an approximation method to attack inequivalence problems for CFGs

    Algorithmic Analysis of Array-Accessing Programs

    Get PDF
    For programs whose data variables range over Boolean or finite domains, program verification is decidable, and this forms the basis of recent tools for software model checking. In this paper, we consider algorithmic verification of programs that use Boolean variables, and in addition, access a single array whose length is potentially unbounded, and whose elements range over pairs from Σ × D, where Σ is a finite alphabet and D is a potentially unbounded data domain. We show that the reachability problem, while undecidable in general, is (1) Pspace-complete for programs in which the array-accessing for-loops are not nested, (2) solvable in Ex-pspace for programs with arbitrarily nested loops if array elements range over a finite data domain, and (3) decidable for a restricted class of programs with doubly-nested loops. The third result establishes connections to automata and logics defining languages over data words

    Heating rate and electrode charging measurements in a scalable, microfabricated, surface-electrode ion trap

    Full text link
    We characterise the performance of a surface-electrode ion "chip" trap fabricated using established semiconductor integrated circuit and micro-electro-mechanical-system (MEMS) microfabrication processes which are in principle scalable to much larger ion trap arrays, as proposed for implementing ion trap quantum information processing. We measure rf ion micromotion parallel and perpendicular to the plane of the trap electrodes, and find that on-package capacitors reduce this to <~ 10 nm in amplitude. We also measure ion trapping lifetime, charging effects due to laser light incident on the trap electrodes, and the heating rate for a single trapped ion. The performance of this trap is found to be comparable with others of the same size scale.Comment: 6 pages, 10 figure

    Foundations for decision problems in separation logic with general inductive predicates

    Get PDF
    Abstract. We establish foundational results on the computational com-plexity of deciding entailment in Separation Logic with general induc-tive predicates whose underlying base language allows for pure formulas, pointers and existentially quantified variables. We show that entailment is in general undecidable, and ExpTime-hard in a fragment recently shown to be decidable by Iosif et al. Moreover, entailment in the base language is ΠP2-complete, the upper bound even holds in the presence of list predicates. We additionally show that entailment in essentially any fragment of Separation Logic allowing for general inductive predicates is intractable even when strong syntactic restrictions are imposed.

    Photoluminescence and Electron Spin Resonance of ilicon Dioxide Crystal with Rutile Structure (Stishovite)

    Get PDF
    This work was supported by ERANET MYND. Also, financial support provided by Scientific Research Project for Students and Young Researchers Nr. SJZ/2017/2 realized at the Institute of Solid State Physics, University of Latvia is greatly acknowledged. The authors express our gratitude to R.I. Mashkovtsev for help in ESR signal interpretation. The authors are appreciative to T.I. Dyuzheva, L.M. Lityagina, N.A. Bendeliani for stishovite single crystals and to K. Hubner and H.-J. Fitting for stishovite powder of Barringer Meteor Crater.An electron spin resonance (ESR) and photoluminescence signal is observed in the as grown single crystal of stishovite indicating the presence of defects in the non‐irradiated sample. The photoluminescence of the as received stishovite single crystals exhibits two main bands – a blue at 3 eV and an UV at 4.75 eV. Luminescence is excited in the range of optical transparency of stishovite (below 8.75 eV) and, therefore, is ascribed to defects. A wide range of decay kinetics under a pulsed excitation is observed. For the blue band besides the exponential decay with a time constant of about 18 ÎŒs an additional ms component is revealed. For the UV band besides the fast component with a time constant of 1–3 ns a component with a decay in tens ÎŒs is obtained. The main components (18 ÎŒs and 1–3 ns) possess a typical intra‐center transition intensity thermal quenching. The effect of the additional slow component is related to the presence of OH groups and/or carbon molecular defects modifying the luminescence center. The additional slow components exhibit wave‐like thermal dependences. Photo‐thermally stimulated creation–destruction of the complex comprising host defect and interstitial modifiers explains the slow luminescence wave‐like thermal dependences.ERANET MYND; ISSP UL Nr. SJZ/2017/2 ; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    The SBRT database initiative of the German Society for Radiation Oncology (DEGRO): patterns of care and outcome analysis of stereotactic body radiotherapy (SBRT) for liver oligometastases in 474 patients with 623 metastases

    Get PDF
    Background: The intent of this pooled analysis as part of the German society for radiation oncology (DEGRO)stereotactic body radiotherapy (SBRT) initiative was to analyze the patterns of care of SBRT for liver oligometastases and to derive factors influencing treated metastases control and overall survival in a large patient cohort. Methods: From 17 German and Swiss centers, data on all patients treated for liver oligometastases with SBRT since its introduction in 1997 has been collected and entered into a centralized database. In addition to patient and tumor characteristics, data on immobilization, image guidance and motion management as well as dose prescription and fractionation has been gathered. Besides dose response and survival statistics, time trends of the aforementioned variables have been investigated. Results: In total, 474 patients with 623 liver oligometastases (median 1 lesion/patient; range 1–4) have been collected from 1997 until 2015. Predominant histologies were colorectal cancer (n= 213 pts.; 300 lesions) and breast cancer (n= 57; 81 lesions). All centers employed an SBRT specific setup. Initially, stereotactic coordinates and CT simulation were used for treatment set-up (55%), but eventually were replaced by CBCT guidance (28%) or more recently robotic tracking (17%). High variance in fraction (fx) number (median 1 fx; range 1–13) and dose per fraction (median: 18.5 Gy; range 3–37.5 Gy) was observed, although median BED remained consistently high after an initial learning curve. Median follow-up time was 15 months; median overall survival after SBRT was 24 months. One- and 2-year treated metastases control rate of treated lesions was 77% and 64%; if maximum isocenter biological equivalent dose (BED) was greater than 150 Gy EQD2Gy, it increased to 83% and 70%, respectively. Besides radiation dose colorectal and breast histology and motion management methods were associated with improved treated metastases control
    • 

    corecore