
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

December 2008

Algorithmic Analysis of Array-Accessing Programs Algorithmic Analysis of Array-Accessing Programs

Rajeev Alur
University of Pennsylvania, alur@cis.upenn.edu

Pavol Cerný
University of Pennsylvania

Scott Weinstein
University of Pennsylvania, weinstein@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Rajeev Alur, Pavol Cerný, and Scott Weinstein, "Algorithmic Analysis of Array-Accessing Programs", .
December 2008.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-08-35.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/894
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76393632?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F894&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/894
mailto:repository@pobox.upenn.edu

Algorithmic Analysis of Array-Accessing Programs Algorithmic Analysis of Array-Accessing Programs

Abstract Abstract
For programs whose data variables range over Boolean or finite domains, program verification is
decidable, and this forms the basis of recent tools for software model checking. In this paper, we
consider algorithmic verification of programs that use Boolean variables, and in addition, access a single
array whose length is potentially unbounded, and whose elements range over pairs from Σ × D, where Σ is
a finite alphabet and D is a potentially unbounded data domain. We show that the reachability problem,
while undecidable in general, is (1) Pspace-complete for programs in which the array-accessing for-loops
are not nested, (2) solvable in Ex-pspace for programs with arbitrarily nested loops if array elements range
over a finite data domain, and (3) decidable for a restricted class of programs with doubly-nested loops.
The third result establishes connections to automata and logics defining languages over data words.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-08-35.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/894

https://repository.upenn.edu/cis_reports/894

Algorithmic Analysis of Array-Accessing

Programs

Rajeev Alur Pavol Černý Scott Weinstein
University of Pennsylvania

{alur,cernyp,weinstein}@cis.upenn.edu

December 3, 2008

Abstract

For programs whose data variables range over Boolean or finite do-
mains, program verification is decidable, and this forms the basis of recent
tools for software model checking. In this paper, we consider algorithmic
verification of programs that use Boolean variables, and in addition, access
a single array whose length is potentially unbounded, and whose elements
range over pairs from Σ × D, where Σ is a finite alphabet and D is a
potentially unbounded data domain. We show that the reachability prob-
lem, while undecidable in general, is (1) Pspace-complete for programs
in which the array-accessing for-loops are not nested, (2) solvable in Ex-
pspace for programs with arbitrarily nested loops if array elements range
over a finite data domain, and (3) decidable for a restricted class of pro-
grams with doubly-nested loops. The third result establishes connections
to automata and logics defining languages over data words.

1 Introduction

Verification questions concerning programs are undecidable in general. However,
for finite-state programs — programs whose data variables range over finite
types such as Boolean, the number of bits needed to encode a program state is
a priori bounded, and verification questions such as reachability are decidable.
This result, coupled with progress on symbolic techniques for searching the
state-space of finite-state programs, and abstraction techniques for extracting
Boolean over-approximations of general programs, forms the basis of recent tools
for software model checking [2, 17, 14].

A natural question is then whether it is possible to extend the Boolean pro-
gram model without losing decidability or worsening computational complexity
of the reachability problem. The first idea might be to add integer variables.
However, adding expressions permitting (Pressburger) integer arithmetic would
cause undecidability. Therefore, one can investigate the possibility of adding
only equality and order tests on integers to the language. Reachability in such

1

programs is decidable, but perhaps the programs themselves are not too inter-
esting. We show that it is possible to extend the model further. We consider
programs that have boolean variables, variables from a potentially infinite do-
main, and access an array.

We focus on algorithmic verification of programs that access a single array.
The length of the input array is potentially unbounded. The elements of the
array range over Σ × D, where Σ is a finite set, and D is a data domain that
is potentially unbounded and totally ordered. The array is thus modeled as a
data word, that is, a sequence of pairs in Σ×D. For example, integer arrays are
easily captured by setting D to be N and Σ to be a singleton set. The program
can have Boolean variables, index variables ranging over array positions, and
data variables ranging over D. Programs can access Σ directly, but can only
perform equality and order tests on elements of D. The expressions in the
program can use constants in D, and equality tests and ordering over index
and data variables. The programs are built using assignments, conditionals,
and for-loops over the array. Even with these restrictions, one can perform
interesting computational tasks including searching for a specific value, finding
the minimum data value, checking that all values in the array are within specific
bounds, or checking for duplicate data values. Array is a heavily used data
structure. For example, Java midlets designed to enhance features of mobile
devices include simple programs accessing the address books, and our methods
can lead to an automatic verification tool that certifies their correctness before
being downloaded. In order to analyze programs statically, it is often necessary
to check relationships among values in the array, as well as their relationships
to values of other variables and constants. For example, in the case of indirect
addressing, it is needed to check that all the values in the array fall within
certain bounds. For programs that fall outside the restrictions mentioned above,
it is possible to use abstract interpretation [8] techniques such as predicate
abstraction [13] to abstract some of the features of the program, and analyze
the property of interest on the abstract program. As the abstract programs are
nondeterministic, we consider nondeterministic programs in this paper.

Our first result is that the reachability problem for programs in which there
are no nested loops is decidable. The construction is by mapping such a pro-
gram to a finite-state abstract transition system such that every finite path in
the abstract system is feasible in the original program for an appropriately cho-
sen array. We show that the reachability problem for programs with non-nested
loops is Pspace-complete, which is the same complexity as that for finite-state
programs with only Boolean variables. The latter is the basis of successful soft-
ware verification tools, and therefore we believe that, coupled with abstraction
techniques, our decision procedure can potentially be the basis of a software
model checking tool that better handles data structures with potentially un-
bounded size.

Our second result establishes decidability of the reachability problem for
programs with arbitrary nesting of loops that do not use index variables, under
the assumption that the data domain is finite. The algorithm can be used for
bounded model checking of such programs. In this case, the array can be viewed

2

as a finite word over the finite alphabet of data values. The traversal order of
a program with nested loops and index/data variables does not directly corre-
spond to classical extensions of automata with multiple passes and/or pebbles
(see for example [11]). We show that the set of arrays for which a particular
Boolean state is reachable is regular, and reachability is solvable in space poly-
nomial in the number of states of the program, which itself is exponential in the
number of variables.

Our third result shows decidability of reachability for programs with doubly-
nested loops with some restrictions on the allowed expressions. The resulting
complexity is non-elementary, and the interest is mainly due to the theoretical
connections with the recently well-studied notions of automata and logics over
data words [5, 4, 18]. Among different kinds of automata over data words that
have been studied, data automata [5] emerged as a good candidate definition for
the notion of regularity for languages on data words. A data automaton first
rewrites the Σ-component to another finite alphabet Γ using a nondeterministic
finite-state transducer, and then checks, for every data value d, whether the
word over Γ obtained by deleting all the positions in which the data value is
not equal to d, belongs to a regular language over Γ. In order to show decid-
ability of the reachability problem for programs with doubly nested loops, we
extend this definition as follows: An extended data automaton first rewrites the
data word as in case of data automata. For every data value d, the correspond-
ing projection, obtained by replacing each position with data value different
from d by the special symbol 0, is required to be in a regular language over
Γ ∪ {0}. We prove that the reachability problem for extended data automata
can be reduced to emptiness of multi-counter automata (or equivalently, to Petri
nets reachability), and is thus decidable. We then show that a program con-
taining doubly-nested loops can be simulated, under some restrictions, by an
extended data automaton. Relaxing these restrictions leads to undecidability of
the reachability problem for programs with doubly-nested loops.

Analyzing reachability problem for programs brings a new dimension to in-
vestigations on logics and automata on data words. We establish some new
connections, in terms of expressiveness and decidability boundaries, between
programs, logics, and automata over data words. Bojanczyk et al. [5] consider
logics on data words that use two binary predicates on positions of the word:
(1) an equivalence relation ≈, such that i ≈ j if the data values at positions i
and j are equal, and (2) an order ≺ which gives access to order on data values,
in addition to standard successor (+1) and order < predicates. They show that
while the first order logic with two variables, FO2(≈, <,+1), is decidable, in-
troducing order on data values causes undecidability, that is, FO2(≈,≺, <,+1)
is undecidable. In this context, our result on programs with non-nested loops
is perhaps surprising, as we show that the undecidability does not carry over to
these programs, even though they access order on the data domain and have an
arbitrary number of index and data variables.

3

2 Programs

In this section, we define the syntax and semantics of programs that we will
consider in this paper.

We start by defining arrays. Let D be an infinite set of data values. We will
consider domains D equipped with equality (D,=), or with both equality and
linear order (D,=, <). Let Σ be a finite set of symbols. An array is a data word
w ∈ (Σ × D)∗. The program can access the elements of the array via indices
into the array.

2.1 Syntax

The programs have one array variable A. Variables b1, b2, . . . are boolean, p1,
p2, . . . range over N, and are called index variables, i1, i2, . . . range over N and
are called loop variables, v1, v2, . . . range over D and are called data variables.
c1, c2, . . . are constants in D, and s1, s2, . . . are constants in Σ. We make a
distinction between loop and index variables because loop variables cannot be
modified outside of the loop header.

Index expressions IE are of the form

IE :: = p1 | i1

Data expressions DE are of the form

DE :: = v1 | c1 | A[IE].d

where A[IE].d accesses the data part of the array.
Σ-expressions SE are of the form

SE :: = s1 | A[IE].s

where A[IE].s accesses the Σ part of the array.
Boolean expressions are defined by the following grammar:

B :: = true | b
| B and B | not B
| IE = IE | IE < IE
| DE = DE | DE < DE
| SE = SE

The programs are defined by the grammar:

P :: = skip
| b1:=B
| p1:=IE
| v1:=DE
| if B then P else P
| if * then P else P
| for i1:=1 to length(A) do P
| P;P

4

The commands include a nondeterministic conditional. We consider nonde-
terministic programs in this paper, in order to enable modeling of abstracted
programs. Software model checking approaches [13, 2, 17] often rely on predi-
cate abstraction. For example, if the original program contains an assignment
of the form b := E, where E is a complicated expression that falls out of scope
of the intended analysis, the assignment is abstracted into a nondeterministic
assignment to b. This is modeled as if * then b:=true else b:=false in
the language presented here.

We classify programs using the nesting depth of loops. We denote programs
with only non-nested loops by ND1, programs with nesting depth at most 2 by
ND2, etc.

Restricted-ND2 programs are programs with nesting depth at most 2, that
do not use index or data variables, and do not refer to order on data or indices.
Furthermore, a key restriction, such that if it is lifted, the reachability problem
becomes undecidable, is a restriction on the syntax of the code inside the inner
loop. For all occurrences of a doubly nested loop in a Restricted-ND2 program,
the following holds. Let i be the loop variable of the outer loop and let j be the
loop variable for the inner loop. The expression A[j].d (A[j].s) can only be
compared with A[i].d (A[i].s), that is, it cannot be compared to constants.

2.2 Semantics

A global state of the program is a valuation of its boolean, loop, index and data
variables, as well as of the array variable. We denote global states by g, g1, and
the set of global states by G. For a boolean, index, loop or data variable v, we
denote the value of v by g[v]. The valuation of the array variable A is a word
w ∈ (Σ × D)∗. The length of the array at global state g is denoted by g[l(A)]
and evaluates to the length of w, and the valuation of the array is denoted by
g[A]. Note that the length and the contents of the array do not change over the
course of the computation.

Semantics of boolean, index, data and Σ expressions can be defined in a
standard way: [[B]] : G→ B, [[IE]] : G→ N, [[DE]] : G→ D and [[SE]] : G→ Σ.

We define the semantics of commands: [[P]] ⊆ G×G.

• (g, g) ∈ [[skip]], for all g in G

• (g, g′) ∈ [[v:=E]], iff g′ = g[v ← [[E]](g)], for any assignment.

• (g, g′) ∈ [[if B then P1 else P2]] iff [[B]](g) = true and (g, g′) ∈ [[P1]]
or [[B]](g) = false and (g, g′) ∈ [[P2]].

• (g, g′) ∈ [[if * then P1 else P2]] iff (g, g′) ∈ [[P1]] or (g, g′) ∈ [[P2]].

• (g, g′) ∈ [[for i1:=1 to length(A) do P]] iff there exist g1, g2, . . . , gl+1,
where l = g[l(A)], such that g1 = g, gl+1 = g′, and for all i such that
1 ≤ i ≤ l, we have that there exists a g′i+1, such that (gi, g′i+1) ∈ [[P]] and
gi+1 = g′i+1[i1 ← i+ 1].

5

• (g, g′) ∈ [[P1;P2]] iff there exists g′′ such that (g, g′′) ∈ [[P1]] and (g′′, g′) ∈
[[P2]].

Given a program, a global state is initial if all boolean variables are set to
false, all index and loop variables are set to 1, and all data variables are set to
the same value as the first element of the array. Thus the only non-specified
part of the initial state, the part that models input of the program, is the array.

Note that for the programs we have defined, where the only iteration allowed
is over the array, the termination is guaranteed. Therefore for all initial global
states gI there exists a global state g such that (gI , g) ∈ [[P]].

A boolean state is a valuation of all the boolean variables of a program. For
a given global state g, we denote the corresponding boolean state by bool(g).
For any boolean variable b of the program, we have that bool(g)[b] = g[b]. We
denote boolean states by m,m1 and the set of boolean states by M .

2.3 Examples

We present four illustrative examples for the classes of programs defined in this
section. First, we will consider a simple array accessing program that scans
through an array to find a minimal data value. It has one index variable, min,
and it is an ND1 program, as it does not contain nested loops. Note that by
definition min is initialized to 1.

Example 1.

for i:= 1 to length(A) do {
if A[i].d < A[min].d then {
min := i

}
}

The correctness requirement for this program is that the index min points to
a minimal element, that is ∀ i: A[i] ≥ A[min]. Verifying the correctness of
the program can be reduced to checking reachability, as the requirement itself
can be expressed as a program.

b:= true;
for i:= 1 to length(A) do {
if A[i].d < A[min].d then {
min := i

}
}
for i:= 1 to length(A) do {
if A[i].d < A[min].d then {
b:=false

}
}

6

We can now ask a reachability question: Does the control reach the end of
the program in a state where b == false holds?

Second, we present an ND1 program that tests whether the array is sorted.
It uses one data variable called prev (note that by definition, prev is initialized
to the same value as the first element of the array).

Example 2.

b:=true;
for i:= 1 to length(A) do {
if A[i].d < prev then b:=false else skip;
prev := A[i].d

}

Third, let us construct a Restricted-ND2 program that tests whether there is
a data value d that appears twice in the array:

Example 3.

b:=false
for i:= 1 to length(A) do {
for j:= 1 to length(A) do
if (A[i].d == A[j].d) and (i != j) {
b:=true;

}
}

Fourth, let us consider an ND2 program that checks the following property:
(1) The projection of the array to the Σ component of each element is (Σ \
{$})∗$(Σ \ {$})∗, and (2) the data value of the $-position occurs exactly once,
and each other data value occurs precisely twice — once before and once after
the $ sign. There is an (easy to write) ND2 program that checks this property.
This fact is used in the proof of undecidability of ND2 programs. Note however,
that this property cannot be checked with Restricted-ND2 programs. The reason
is that the inner loop of such a program cannot compare the values in the array
to constants, and thus does not ’see’ the $ sign. Therefore it cannot check
that one of the occurrences appeared to the left of the $ sign, while the other
appeared to the right.

3 Reachability

Given a program P , a boolean state m is reachable if and only if there exists
an initial global state gI and a global state g such that (gI , g) ∈ [[P]] and
bool(g) = m. The reachability problem is to determine, for a given program
and a given boolean state m, whether m is reachable.

In this section, we show that reachability is decidable for programs with
nesting depth equal to 1 (ND1) programs, and it is decidable for programs with

7

arbitrary nesting of loops (but without index variables) as well if the data do-
main D is finite.

Local states. We will use a notion of a local state. Given a program, a local
state is a valuation of all its boolean, index, loop, and data variables, as well
as the values of array elements corresponding to index and loop variables. For
each index and loop variable v, local states have an additional variable A v that
stores the value of the array element at position given by v.

For a given global state g, we denote the corresponding local state by loc(g).
For any variable v of the program, we have that loc(g)[v] = g[v]. If v is an index
or a loop variable, we also have that loc(g)[A v] = [[A[v]]](g). We denote local
states by q, q1, and the set of local states by Q. A local state q is initial if there
exists an initial global state gI such that loc(gI) = q.

Normal form. In order to simplify the presentation of proofs of the decidabil-
ity results, we will first translate the programs into a normal form. A program
is in normal form if the branches of if statements do not contain loops.

We define a translation function norm(P), that given a program P returns an
equivalent program in normal form. We use an auxiliary function assume(B, P),
and we set norm(P) = assume(true, P). The function assume(B, P) is defined
inductively as follows:

• assume(B, skip) = skip.

• assume(B, v:=E) = if B then v:=E else skip,
if B is not true, and v:=E otherwise.

• assume(B, if B1 then P1 else P2) =
b := B1;
assume(B and b, P1);assume(B and (not b), P2),
where b is a new boolean variable

• assume(B, if * then P1 else P2) =
if * then b:=true else b:=false;
assume(B and b, P1);assume(B and (not b), P2),
where b is a new boolean variable

• assume(B, for i1:=1 to length(A) do P) =
for i1:=1 to length(A) do assume(B, P).

• assume(B, P1;P2) =
assume(B, P1);assume(B, P2).

The program norm(P) has more variables than the program P. However,
intuitively the programs norm(P) and P compute the same function on the
common variables. We now formalize this notion. Let P, P’ be two programs,
and let G (G′) be the set of global states of P (P’). For a function f : G′ → G,

8

we define [[P]] ∼f [[P’]] iff we have that for all g′1, g
′
2 ∈ G′ we have that (g′1, g′2) ∈

[[P’]] iff (f(g′1), f(g
′
2)) ∈ [[P]].

Let P be a program, let G be its set of global states and let V be its set
of variables. Let V ′ be the set of variables of norm(P), and let G′ be its set
of global states. We have that V ⊆ V ′. We define a function π : G′ → G as
follows: π(g′) = g iff g and g′ agree on variables from V .

Proposition 1. For all programs P, we have that [[norm(P)]] ∼π [[P]]. Fur-
thermore, the nesting depth of loops is the same in norm(P) as it is in P. The
number of boolean variables in norm(P) increased by at most the number of if
statements in P.

3.1 Programs with non-nested loops

The goal of this subsection is to prove the following theorem:

Theorem 2. Reachability for ND1 programs is decidable. The problem is Pspace-
complete.

The structure of the proof will be as follows. We first characterize the
semantics of a program P in terms of a transition system T whose states will be
tuples of local states of P. Secondly, we construct a finite state system Tα that
abstracts the infinite part of the local states, that is the values of index and data
variables, and keeps only the order of these values. We show that reachability
of a boolean state m can be decided on the abstract system, in the sense that
m is reachable in T if and only if it is reachable in Tα. The key part of the
proof that relates the transition systems T and Tα is Lemma 5. The lemma
shows that every finite path in the abstract transition system is feasible in the
concrete transition system for an appropriately chosen array.

To simplify the presentation, we will suppose that there are no constants in
D in the programs. At the end of this subsection, we will explain how the proof
that follows can be extended to programs with constants from D.

Transition system semantics. We show that for programs that contain only
non-nested loops and are in normal form, [[P]] can be represented by a triple
(e, T, f), where T = (R, δ ⊆ R×(Σ×D)×R,F) is a transition system whose set
of states is R. The set F ⊆ R is the set of final states. The transition relation
will simulate executions of the loops that appear in the program. Its input will
be, in addition to a state from R, also a pair (a, d) from (Σ×D) representing the
current element of the input array. The relation e is a subset of Q×R and the
relation f is a subset of F ×Q. The relation e will represent the loop-free part
of the program before the first non-nested loop, and the relation f will represent
the loop-free part of the program after the last non-nested loops. Recall that
for program in normal form, loops do not appear in branches of if statements.

We define a function [[P]]t which for loop-free programs returns a binary rela-
tion over Q, and returns a triple (e, T, f) for programs that contain non-nested
loops. Intuitively, a loop free program P will be represented by a binary relation

9

over Q. For a loop command we use the relation representing the (loop free)
body of the loop to construct a transition system. For sequential composition of
commands, a product construction augmented with some bookkeeping is used.
We explain the construction for two sequentially composed loops that iterate
through the array. The transition system is a product of the transition systems
defined by the two loops, and the bookkeeping part ensures that the second loop
starts from a state where the first loop finished.

For the following commands P: skip, v := E, if B then P1 else P2, if
* then P1 else P2, [[P]]t is defined by

[[P]]t = {(loc(g), loc(g′))|(g, g′) ∈ [[P]]}.
Note that for the conditionals, we have that P1 and P2 are loop-free. For loops
and sequential composition we have:

• [[for i1:=1 to length(A) do P]]t = (e, (Q, δ,Q), f), where e and f are
identity relations on Q, and δ(q, (a, d), q′) if there exists a local state q′′ ∈
Q such that (q, q′′) ∈ [[P]]t and q′ = q′′[i1 = i + 1, A i1 = (a, d)], where
i = q[i1]. (Note that P is loop free.)

• [[P1;P2]]t is defined as follows:
1. If [[P1]]t = f1 and [[P2]]t = f2, then [[P1;P2]]t = f1 ◦ f2.
2. If [[P1]]t = f1 and [[P2]]t = (e2, T2, f2), then [[P1;P2]]t = ((f1◦e2), T2, f2).
3. If [[P1]]t = (e1, T1, f1) and [[P2]]t = f2, then [[P1;P2]]t = (e1, T1, (f1 ◦
f2)).

4. If [[P1]]t = (e1, T1, f1) and [[P2]]t = (e2, T2, f2), then [[P1;P2]]t =
(e, T, f), where the components are defined as follows. Let T1 =
(R1, δ1, F1) and T2 = (R2, δ2, F2). The transition system T = (R, δ, F)
is defined as follows: R = R1×R2×R2, δ((r1, r2, r3), (a, d), (r′1, r′2, r′3))
iff δ1(r1, (a, d), r′1), r2 = r

′
2, and δ2(r3, (a, d), r

′
3). A state (r1, r2, r3)

is in F if and only if r1 ∈ F1, r3 ∈ F2, and (r1, r2) ∈ (f1 ◦ e2).
The function e is defined in the following way: (q, (r1, r2, r3)) ∈ e if
and only if r2 = r3 and (q, r1) ∈ e1. For the function f , we have
((r1, r2, r3), q) ∈ f if (r1, r2, r3) ∈ F and (q, r3) ∈ f2.

We now show that [[P]]t = (e, T, f) captures the semantics of P. In what
follows, we suppose that the program that we analyze contains at least one
non-nested loop, and therefore [[P]]t has the form (e, T, f).

Given a transition system T = (R, δ, F), where δ is a subset ofR×(Σ×D)×R,
we extend the definition of δ to words in (Σ×D)∗. We define a relation δ∗ on
R × (Σ × D)∗ × R as follows: for w = w1 . . . wl we have that δ∗(r, w, r′) iff
∃r1, . . . rl+1 such that r = r1, r′ = rl+1 and for all i such that 1 ≤ i ≤ l we have
that δ(ri, wi, ri+1).

Given a word w in (Σ×D)∗, we say that q2 is w-reachable from q1 in [[P]]t iff
[[P]]t = (e, T, f), T = (R, δ, F) and there exist r1, r2 ∈ R such that (q1, r1) ∈ e,
(r2, q2) ∈ f , and δ∗(r1, w, r2).

10

Lemma 3. A local state q2 is w-reachable from q1 in [[P]]t if and only if there
exist states g1 and g2 such that loc(g1) = q1, g1[A] = w, loc(g2) = q2, g2[A] = w
and (g1, g2) ∈ [[P]].

Proof. The proof uses induction on the structure of the program P.

A boolean state m is w-reachable in [[P]]t if there exist an initial local state
qI , a local state q such that bool(q) = m and q is w-reachable from qI in [[P]]t.

The next lemma follows from Lemma 3.

Lemma 4. Given a program P , a boolean state m is reachable if and only if
there exist a word w ∈ (Σ×D)∗ such that m is w-reachable in [[P]]t.

Furthermore, if [[P]]t = (e, T, f) and T = (R, δ, F), we have that R = Q2k−1,
where k is the number of loops in P.

Abstract transition system. We fix a program P for the rest of this subsec-
tion. Let [[P]]t be (e, T, f), where T = (R, δ, F), and R = Q2k−1. We show that
we can find a finite state system Tα (and corresponding relations eα and fα)
such that we can reduce reachability in T to reachability in Tα. The main idea
in the construction of the abstract transition system is that it will keep track of
only the order of index and data variables, not their values.

We will need an abstract version of the set Q. Let IV be the set of index
and loop variables of P. Let DV be the set of data variables of P. An abstract
state is a tuple (m,SI ,SD), where m is a boolean state in M , SI is a total
order on IV and SD is a total order on DV ∪ IV . For example, if a program
has an index variable p1, a loop variable i1 and a data variable d1, a possible
abstract state is (m, p1 < i1, p1 = i1 < d1). This means that the program is
in a boolean state m, p1 is less than i1, and A[p1] is equal to A[i1] and is less
than d1. Let Qα be the set of abstract states.

We will also need an abstract version of R, the set of states of T . We consider
sets IV 2k−1 and DV 2k−1, where there are 2k−1 copies of each variable. Let SIR
be a total order on IV 2k−1 and let SDR be a total order on DV 2k−1 ∪ IV 2k−1.
We will consider the set U = M2k−1. Let Rα be the set of abstract states of
the form (u,SIR,SDR), where u is in U .

The abstraction function αQ : Q → Qα can be defined straightforwardly:
αQ(q) = (m,SI ,SD) iff bool(q) = m and for all index and loop variables p1, p2,
we have that p1 < p2 in SI iff q[p1] < q[p2], and p1 = p2 in SI iff q[p1] = q[p2].
The definition is similar for SD . We present the case of one index variable
p1 and one data variable v1. We have that p1 < v1 in SD if and only if
[[A[p1]]] < q[v1], and p1 = v1 in SD if and only if [[A[p1]]] = q[v1]. We define
the abstraction function αR : R→ Rα similarly.

We now define the abstract transition system. More precisely, we define
[[P]]α = (eα, Tα, fα) using [[P]]t as follows: Let Tα = (Rα, δα, Fα). The transition
relation δα ⊆ Rα × Rα is defined in a standard way: δα(rα1 , r

α
2) iff there exist

r1, r2 and a pair (a, d) ∈ (Σ × D)∗, such that δ(r1, (a, d), r2) and α(r1) = rα1
and α(r2) = rα2 . The set F

α of final states is defined as follows: rα ∈ Fα

11

iff there exists r ∈ F and α(r) = rα. The relation δα∗ denotes the transitive
closure of δα. Given a relation e on Q × R, we define its abstract version eα
on Qα ×Rα similarly to the definition of the abstract transition relation. Also,
given a relation f on R×Q, we define its abstract version fα on Rα ×Qα.

The following lemma is the key part of the proof. It relates reachability of
a boolean state in the abstract and concrete systems.

Note first that the abstraction function does not define a bisimulation rela-
tion between the abstract and concrete states. We demonstrate this using an
example. Let us consider a program P and let us focus on two data variables v1
and v2. We set D to be N, the set of natural numbers. Let q1 be a local state
such that its boolean component is m, the value of v1 at q is 5 and the value of
v2 at q is 6. We do not need to consider the values of the other variables. The
abstract state corresponding to r1, rα1 = αQ(r1) is thus m,SI ,SD , where SD ,
the order on data and index variables, includes d1 < d2. The abstract state rα1 ,
can transition to an abstract state rα2 , that requires that another data variable
v3 has a value greater than the value of v1, but smaller than the value of v2.
Note now that the concrete state r1 cannot transition to any state that would
correspond to the order on data variables required by rα2 , because there is no
value between 5 and 6.

However, we show that for each run of the abstract transition system, we
can find a run in the concrete transition system leading to the same boolean
state, by appropriately choosing the input array.

Lemma 5. For all rα1 , r
α
2 in Rα,we have that δα∗(rα1 , r

α
2) if and only if there

exist r1, r2 ∈ R and a word w ∈ (Σ × D)∗ such that α(r1) = rα1 , α(r2) = r
α
2 ,

and δ∗(r1, w, r2).

Proof. It is straightforward to prove that if there exist r1, r2 and w such that
α(r1) = rα1 , α(r2) = r

α
2 , and δ

∗(r1, w, r2) then δα∗(rα1 , r
α
2). We only need to

apply the definition of δα inductively.
The proof of the other implication uses induction on the length of the path

from rα1 to r
α
2 that witnesses δ

α∗(rα1 , r
α
2). We will also need the following notion:

The relation Gap(r, o) holds for r ∈ R and o ∈ N iff for all data variables (and
values pointed to by index variables) v1, v2, we have that if r[v1] > r[v2], then
r[v1] − r[v2] ≥ o. The relation δαk (r

α
1 , r

α
2) is defined as follows: δ

α
k (r

α
1 , r

α
2) if

there exists a state rα3 ∈ Rα such that δα(rα1 , r
α
3) and δ

α
k−1(r

α
3 , r

α
2) for k > 1;

and δα1 = δ
α.

We will prove the following inductive claim: If δαk (r
α
1 , r

α
2), then for all r1 such

that αR(r1) = rα1 and Gap(r1, 2k), there exists r2 and a word w ∈ (Σ × D)k,
such that δ(r1, w, r2), and αR(r2) = rα2 .

The base case, where k = 0 is straightforward. For the inductive case,
suppose that δαk (r

α
1 , r

α
2). Then there exists a state r

α
3 ∈ Rα such that δα(rα1 , r

α
3)

and δαk−1(r
α
3 , r

α
2). Let r1 be such that α(r1) = r

α
1 and Gap(r1, 2

k). (It is easy to
show that such r1 exists for all rα1 .) We need to find a state r3 ∈ R and a pair
(a, d) ∈ Σ ×D such that δ(r1, (a, d), r3), αR(r3) = rα3 and Gap(r3, 2k−1). This
is done by case analysis of the transition δα(rα1 , r

α
3). Informally, the transition

can require that the data value d of the current position (the position pointed

12

to by the loop variable) has to be between two stored values, but as Gap(r1, 2k)
holds, we can always choose d such that we ensure that Gap(r3, 2k−1). We can
conclude by using induction hypothesis for δαk−1(r

α
3 , r

α
2).

A boolean state m is reachable in [[P]]α if there exists an initial state gI , an
abstract state qαI such that α(loc(gI)) = q

α
I , and states q

α
2 ∈ Qα, rα1 , r

α
2 ∈ Rα

such that (qαI , r
α
1) ∈ eα, δα∗(rα1 , rα2), (rα2 , qα2) ∈ fα, and bool(qα2) = m.

Lemma 6. A boolean state m is reachable if and only if it is reachable in [[P]]α.

Proof. The proof uses Lemmas 4 and 5.

Complexity The proofs of the preceding lemmas give rise to an algorithm for
deciding reachability of a boolean state m. The algorithm tests reachability of
m in the abstract transition system. We show that the algorithm is in Pspace.
The number of states in Tα depends exponentially the number of variables in
the program. Furthermore, given two abstract states, rα1 and r

α
2 , one can decide

(in polynomial time in the number of variables), whether the tuple (rα1 , r
α
2) is

in δα.
In order to show that the problem is Pspace-hard, we can reduce Succinct-

Reachability (see [21]) to our reachability problem. Note that the resulting
instance will use only boolean variables, not data or index variables.

This completes the proof of Theorem 2.
As noted above, we presented the proof for programs without constants in

D. The proof can be extended to programs with constants in a straightforward
way: Let c1 be the smallest and let c2 be the greatest constant that a given
program P uses. The abstract system [[P]]α will need to track the values between
c1 and c2 precisely, and track only the order between the stored values for values
less than c1 or greater than c2. The resulting system will thus still have a finite
number of states. The reachability problem can be solved in space polynomial
in the number of variables and the size (number of bits) of the largest constant.

3.2 Finite data domain

In this subsection, we consider the case when the data domain D is finite. We
also syntactically restrict the programs: we consider programs which do not
have index variables and which do not contain expressions of the form IE =
IE and IE < IE, that is the index expressions (consisting now only of loop
variables) are not compared. We call these programs index-free. The reason we
consider this restriction is that in this case, the local state needs only to store
a fixed number of data values. As the data values are from a finite domain, the
set of local states is finite.

We will show that in this case, we can allow the nesting depth of loops to
be arbitrary while maintaining the decidability of the reachability problem.

Theorem 7. Reachability is decidable for index-free programs if the data do-
main D is finite. The problem is in Expspace.

13

Note that if we make the data domain finite and the state of the program
(apart from the loop variable) finite as well, there is a natural question about
how such programs are related to finite state automata on words. Let us consider
an execution of such a program. The traversal order of this execution is different
from standard finite state automata, as the program reads the input array many
times. The number of times P scans the array in fact depends also on the length
of the input word, and is therefore unbounded. If n is the length of the input
word, and k is the nesting depth of loops in a program P, then P scans the array
nk times.

We will show how all these traversals of the array can be simulated by a
finite state system. The main idea of the construction is that even though the
number of iterations through the array depends on the length of the input word,
each such scan by a particular loop can be characterized by a pair of states of
the program - a state in which it begins, and a state in which it ends.

Construction of a finite-state transition system. In the rest of this sub-
section, we fix a program P. A program in normal form can be seen as a sequence
f1L1f2L2 . . . fkLkfk+1, where fi is a binary relation over Q representing a loop-
free part of the program, and Li is a loop, i.e. a command of the form for i1:=1
to length(A) do P1. We present the construction of such a sequence Seq(P).

For the following commands P: skip, v := E, if B then P1 else P2, if
* then P1 else P2, Seq(P) is defined by

Seq(P) = {(loc(g), loc(g′))|(g, g′) ∈ [[P]]}.

Note that for the conditionals, we have that P1 and P2 are loop free. For loops
and sequential composition we have:

• Seq(for i1:=1 to length(A) do P) = f1Lf2, where (q, q) ∈ f1 and
(q, q) ∈ f2, for all q ∈ Q, and L = for i1:=1 to length(A) do P.

• Seq(P1;P2) is defined as follows: If Seq(P1) = f1L1f2L2 . . . fkLkfk+1 and
Seq(P2) = f ′1L

′
1f
′
2L
′
2 . . . f

′
k′L′k′f ′k′+1, then Seq(P1;P2) = f1L1f2L2 . . . fkLk(fk+1◦

f ′1)L
′
1f
′
2L
′
2 . . . f

′
k′L′k′f ′k′+1.

Given a program P, we construct a finite-state transition system FS (P) =
(S,D, δ, s0). Let L be the set of all loop commands that appear in the program.
Let SP be a set of all tuples of the form Q × Q × L × Q. The set S is then
2SP ∪ {s0}, where s0 will be the initial state.

Given two states q1 and q2, we say that a state s of FS (P) models a triple
(q1, P, q2) (denoted by s |= (q1, P, q2)) iff Seq(P) = f1L1f2L2 . . . fk+1 and there
exist q11q

2
1q
1
2q
2
2 . . . q

1
kq
2
kq
1
k+1 such that for all i, if 1 ≤ i ≤ k, then (q1i , q2i) ∈ fi,

there exists a state q such that (q2i , q, Li, q
1
i+1) is in s, q

1
1 = q1 and q

1
k+1 = q2.

A state s is called starting iff there exist an initial local state q1 and a local
state q2 such that s |= (q1, P, q2) and for all tuples (q1, q2, L, q3) in s, we have
that q1 = q2.

14

A state s is called ending iff for all tuples (q1, q2, L, q3) in s, we have that
q2 = q3.

The transition relation δ ⊆ S× ((Σ×D)∪{ε})×S is defined as follows. The
initial state s0 transitions on ε to a state s iff s is a starting state. In addition,
we have that δ(s1, (a, d), s2) iff for all tuples t ∈ s, there exists a tuple t′ ∈ s′
such that t

(a,d),s,s′−−−−−−→ t′, and for all tuples t′ ∈ s′, there exists a tuple t ∈ s such
that t

(a,d),s,s′−−−−−−→ t′. The auxiliary relation t
(a,d),s,s′−−−−−−→ t′ is defined as follows:

(q1, q2, L, q3)
(a,d),s,s′−−−−−−→ (q′1, q

′
2, L, q

′
3) iff L = for i1 := 1 to length(A) do P,

q1 = q′1, q3 = q′3, and there exist a state q
′′ such that s |= (q2, P, q′′2) and

q′2 = q
′′
2 [A i1 = (a, d)].

Given a data word w in (Σ × D), we say that q2 is w-reachable from q1
in FS (P) iff there exist a starting state s, an ending state s′, a word w =
w1w2 . . . wl, and states s1, s2, . . . , sl+1 such that s |= (q1, P, q2), s = s1, s′ =
sl+1, and δ(si, wi, si+1), for all i such that 1 ≤ i ≤ l.
Lemma 8. A local state q2 is w-reachable from q1 in FS (P) if and only if there
exist states g1 and g2 such that loc(g1) = q1, g1[A] = w, loc(g2) = q2, g2[A] = w
and (g1, g2) ∈ [[P]].

Proof. The proof uses induction on the nesting depth of P. The inductive step
is proven by induction on the number of sequentially composed loops in the
program.

A boolean state m is w-reachable in Seq(P) if there exist an initial local state
qI and a local state q, such that bool(q) = m, and q is w-reachable from qI in
FS (P).

The proof of the following lemma uses Lemma 8.

Lemma 9. A boolean state m is reachable if and only if it is reachable in FS(P).

Lemma 9 reduces the reachability problem to the reachability problem in a
finite state transition system whose size is doubly exponential in the number of
variables of the program. We also have that given two states of FS (P), s1 and
s2, and a pair (a, d) ∈ (Σ ×D), it is possible to decide (in polynomial time in
the number of variables), whether δ(s1, (a, d), s2). Therefore we have that the
problem of deciding reachability is in Expspace. This concludes the proof of
Theorem 7.

4 Programs, automata and logics on data words

In this section, we will examine the decidability boundary for array-accessing
programs, and compare the expressive power of these programs to that of logics
and automata on data words. We will show that the reachability problem for
Restricted-ND2 programs is decidable, and that it is undecidable for full ND2
programs. We start by reviewing the results on automata and logics on data
words, as these will be needed for the decidability proof. We will reduce the

15

reachability problem for Restricted-ND2 programs to the nonemptiness problem
of extended data automata, a new variation of data automata. The latter is
a definition intended to correspond to the notion of regular automata on finite
words.

4.1 Background

We briefly review the results on automata and logics on data words from [5].
Recall that a data word is a sequence of pairs Σ × D. A data language is a
set of data words. Let w be a data word (a1, d1)(a2, d2) . . . (an, dn). The string
str(w) = a1a2 . . . an is called the string projection of w. Given a data language
L, we write str(L) to denote the set {str(w) | w ∈ L}. A class is a maximal set
of positions in a data word with the same data value. Let S(w) be the set of all
classes of the data word w. For a class X in S(w) with positions i1 < . . . < ik,
the class string str(w,X) is ai1 . . . aik .

Data automata A data automaton (DA) A = (G,C) consists of a transducer
G and a class automaton C. The transducer G is a nondeterministic finite-state
letter-to-letter transducer from Σ to Γ and C is a finite-state automaton on Γ.

A data word w = (a1, d1)(a2, d2) . . . (an, dn) is accepted by a data automaton
A if there is an accepting run of G on the string projection of w, yielding an
output string b = b1 . . . bn, and for each class X in S(w′), the class automaton
C accepts str(w′, X), where w′ = w′1 . . . w

′
n is defined by w

′
i = (bi, di), for all

i such that 1 ≤ i ≤ n. Given a DA A, L(A) is the language of data words
accepted by A. The nonemptiness problem for data automata is decidable. The
proof is by reduction to a computationally complex problem, the reachability
problem in Petri nets.

Logics on data words We define logics whose models are data words. Follow-
ing [5], we consider two predicates on positions in a data word whose definition
also involves the data values at these positions. The predicate i ≈ j is satisfied
if both positions i and j have the same data value. The predicate i ≺ j is
satisfied if the data value at position i is smaller than the data value at position
j. Furthermore, standard successor and order predicates on positions in a data
word are used.

Let us first consider logics that use the ≈ predicate and not the ≺ pred-
icate. We first note that for a first order logic FO(≈, <,+1) satisfiability is
undecidable, even if we restrict the number of variables to three. If we restrict
the number of variables to two, the logic becomes decidable, and the proof is
by reduction to the nonemptiness problem of data automata. The decidability
naturally extends to existentially quantified second order monadic logic with
two first order variables. Moreover, EMSO2(≈,+1,⊕1) is precisely equivalent
in expressive power to data automata. The predicate ⊕1 denotes the class suc-
cessor, and i ⊕ 1 = j is satisfied if i and j are two successive positions in the
same class of the data word. The proof of the previous fact implies that the

16

logic EMSO2(≈, <,+ω,⊕1) is included in EMSO2(≈,+1,⊕1). The symbol +ω
represents all predicates of the form +k, k ∈ N, i.e. the logic includes all predi-
cates i+ 2 = j, i+ 3 = j, etc.

Example 4. Let us consider a language L of data words such that str(L), the
set of string projections, is exactly the the set of all words over {a, b, c} that
contain the same number of as, bs, and cs.

It is easy to find a data automaton A such that L(A) = L. The transducer
computes the identity function, i.e. it accepts all words and its output string
is the same as its input string. The class automaton ensures, for each class,
that the class contain exactly one occurrence of a, one occurrence of b and one
occurrence of c.

4.2 Extended data automata

Position-preserving class string Note that the class automaton does not
know the positions of symbols in the word w. The symbols from other classes
have simply been erased. This is in contrast to programs that scan the array
linearly from left to right. We therefore define an extension of the notion of
class string and a corresponding extension of the class automaton.

Given a data word w ∈ (Σ×D)∗, a position-preserving class string pstr(w,X)
is a string over Σ∪{0}. (We assume that 0 /∈ Σ.) Let w = w1w2 . . . wn, let i be
a position in w, and let wi be (ai, di). The string v = pstr(w,X) has the same
length as w, and for vi we have that vi = ai iff i ∈ X, and vi = 0 otherwise.
That is, for each position i which does not belong to X, the symbol from Σ at
the position i is replaced by 0.

An extended data automaton (EDA) E = (G,C) consists of a transducer
G and a class automaton C. The transducer G is a finite-state letter-to-letter
transducer from Σ to Γ and C is a finite-state automaton over Γ ∪ {0}.

A data word w = w1 . . . wn is accepted by the EDA E if there is an accepting
run of G on the string projection of w, yielding an output string b = b1 . . . bn,
and for each class X in S(w′), the class automaton C accepts pstr(w′, X), where
w′ = w′1 . . . w

′
n is defined as follows: w

′
i = (bi, di), for all i such that 1 ≤ i ≤ n.

Given an EDA E , L(E) is the language of data words accepted by E .

Example 5. We consider L, a language of data words defined by the following
property: A data word w is in L iff for every class X in S(w), we have that
between every two successive positions in the class, there is exactly one position
from another class.

We show that there exists an EDA E = (G,C) such that L(E) = L. The
transducer G computes the identity function. The class automaton C is given
by the following regular expression: 0∗(Σ0)∗0∗. It is easy to see that E accepts
L.

We first note that for each DA A, it is easy to find an EDA E such that
L(E) = L(A). We just modify the class automaton C, by adding the tuple

17

q1

q2

q3

q4
q5

q6

q7

q8

q9 q10

q11

0

0

0

00

0

0
0

0
0

0

Figure 1: A connected component of a graph C0 corresponding to an EDA E

(q, 0, q), for each q, to the transition relation. This means that on reading 0 the
state of the class automaton does not change.

We will also show in this section that for each EDA E we can find an equiv-
alent DA A. This might not be obvious at a first glance, as class automata of
DAs do not get to see the distances between positions in a class. Indeed, we
show that the language from Example 5 cannot be captured by a determinis-
tic DA. However, we show that EMSO2(≈,+1,⊕1) and EDAs are expressively
equivalent, and since EMSO2(≈,+1,⊕1) and DAs are also expressively equiva-
lent, we conclude that for every EDA there exists a DA that accepts the same
language. However, the proof that satisfiability of EMSO2(≈,+1,⊕1) formu-
las is decidable uses a reduction to DAs, and is rather involved. Therefore we
present a direct proof for decidability of reachability for EDAs.

Theorem 10. Given an EDA E, it is decidable whether L(E) = ∅.
Let E = (G,C) be an EDA, letG be defined by a tuple (QG,Σ,Γ, δG, qG0 , FG),

and let C be defined by a tuple (QC ,Γ, δC , qC0 , FC). We start by describing a
more operational view of EDAs. A run of an EDA on a data word w is a function
L from positions in w to tuples of the form (q, o, c), where q ∈ QG is a state of
the transducer G, o (a symbol from Γ) is the output of the transducer, and c
is a function from S(w) to QC , the set of states of C. Furthermore, we require
that L is consistent with δG and δC , the transition functions of G and C. We
define L(0) to be (qG0 , γ, λX.q

C
0), i.e. the transducer and all the copies of the

class automaton are in initial states. Furthermore, for each position i, L(i) is
equal to (q′, o′, c′) if and only if wi = (a, d), L(i− 1) = (q, o, c) and

• (q′, o′) ∈ δG(q, a),
• for the unique X such that i ∈ X we have c′(X) ∈ δC(c(X), o′),
• for X such that i /∈ X we have c′(X) ∈ δC(c(X), 0).
A run is accepting iff L(n) = (q, o, c), q is a final state of G and for all X in

S(w), we have that c(X) is a final state of C.

18

Let us consider the class automaton C. Without loss of generality, we sup-
pose that C is a complete deterministic automaton on Γ ∪ {0}. The transition
function δC defines a directed graph C0 with states of C as vertices and 0-
transitions as edges, i.e. there is an edge (p1, p2) in C0 if and only if δ(p1, 0) = p2.
Every vertex in C0 has exactly one outgoing edge (and might have multiple in-
coming edges). Therefore, each connected component of C0 has exactly one
cycle. A vertex is called cyclic if it is part of a cycle, and it is called non-cyclic
otherwise. It is easy to see that each connected component is formed by the
cyclic vertices and their 0-ancestors. An example of a connected component is in
Figure 1. The vertex labeled q6 is cyclic, its ancestors q9, q10, q11 are non-cyclic.

The graph C0 consists of a number of connected components. We denote
these components by Cj

0 , for j ∈ [1..k], where k is the number of the components.
Let W be the set of all non-cyclic vertices. For each non-cyclic vertex v, let
D(v) be defined as follows: D(v) = d for non-cyclic vertices connected to a
cycle, where d is the length of the unique path connecting v to the closest cyclic
vertex. For the graph C0, we define D(C0) to be maxv∈W D(v).

Let i be a position in a data word w. The data word w1w2 . . . wi is denoted
by prefix (w, i). Let us consider a position i in a data word w and the set of
classes S(w). Let Sact(w, i) be a set of active classes, i.e. classes X such that
there is a position in X to the left of the position i. More formally, a class
X ∈ S(w) is in Sact(w, i) if the string str(prefix (w, i), X) is not equal to 0i.

Lemma 11. Let L be a run of E on w. Let i be a position in w. Let L(i) be
(q, o, c). The number N of classes X, such that X is in Sact(w, i) and c(X) is
a noncyclic state, is bounded by D(C0), i.e. N ≤ D(C0).
Proof. Let i be a position in a word w. If i ≤ D(C0), then number of active
classes is at most D(C0), and we conclude immediately.

Let us consider the case i > D(c0). Let L(i) be (q, o, c) and let s be the
string of length D(c0) defined by s = wi−D(c0)+1 wi−D(C0)+2 . . . wi. There are
two possible cases for each class X in S(w):

• pstr(s,X) = 0D(C0). Let L(i−D(C0)) = (q′, o′, c′), and let c′(X) = v. We
can easily prove that δ∗C(p, 0

e) is not inW , for all e ≥ D(p). By definition,
D(C0) ≥ D(p). Therefore, we can conclude that c(X) �∈W .

• pstr(s,X) �= 0D(C0). This is true for at most D(C0) classes, because, for
all positions x, there is exactly one class X, such that the symbol at the
position x of the class string pstr(s,X) is not 0.

Therefore we have that c(X) ∈W for at most D(C0) classes.

We reduce emptiness of EDAs to emptiness of multicounter automata. Mul-
ticounter automata are equivalent to Petri nets [10], and thus the emptiness
of multicounter automata is decidable. We use the definition of multicounter
automata from [5].

19

Multicounter automata Amulticounter automaton is a finite, non-deterministic
automaton extended by a number k of counters. It can be described as a tu-
ple (Q,Σ, k, δ, qI , F). The set of states Q, the input alphabet, the initial state
qI ∈ Q and final states F ⊆ Q are as in a usual finite automaton.

The transition relation is a subset of Q × (Σ ∪ {ε})× {inc(i), dec(i)} × Q.
The idea is that in each step, the automaton can change its state and modify
the counters, by incrementing or decrementing them, according to the current
state and the current letter on the input (which can be ε). Whenever it tries
to decrement a counter of value zero the computation stops and rejects. The
transition of a multicounter automaton does not depend on the value of the
counters in any other way. In particular, it cannot test whether a counter is
exactly zero.

Lemma 12. Let E be an EDA. A multicounter automaton V such that str(L(E)) =
L(V) can be computed from E.
Proof. We present the construction of a multicounter automaton V that sim-
ulates E . The multicounter automaton V simulates the transducer G and a
number of copies of C. There is one copy per class in S(w), where w is the
word the automaton is reading. We say that a class automaton performs a 0-
transition if the input symbol it reads is 0, and it performs a Γ-transition if the
input symbol it reads is from Γ.

Intuitively, at each step, the automaton V :

1. Simulates the transducer G using the finite state part (i.e. not the coun-
ters).

2. It guesses to which class the current position belongs, and it executes
the Γ-transition of the automaton for that class with the symbol that is
the output of the transducer at this step. For all the other simulated
automata, V executes the 0-transition. (This is sufficient because each
position belongs to exactly one equivalence class.)

The counters of the multicounter automaton V correspond to the cyclic
vertices in each Cj

0 . The value of the counter h corresponds to the number of
copies of C currently in the state h. The finite part of the automaton state
tracks the number of copies in each non-cyclic state. The key idea of the proof
is that the total number of copies in non-cyclic states is finite and bounded (by
D(C0)). This fact is implied by Lemma 11.

Furthermore, one copy e of the class automaton is used to keep track of all
the classes that are not active yet, i.e. not in Sact(w, i) at step i - thus when a
position-preserving class string contains a symbol in Γ for the first time, a new
copy of the automaton C is started from the state at which the copy e is.

Let γ ∈ Γ be the current input symbol. The automaton works as follows:
The first step consists of the automaton V nondeterministically guessing the

equivalence class X to which the current position belongs. The copy of the class
automaton for X is then set aside while the second step is performed. That is,

20

if the copy is in state s, then s is remembered in a separate part of the finite
state.

In the second step, the automaton V simulates 0-transitions for all the other
copies (other than the copy that performed the Γ-transition). For copies in
non-cyclic states, this is done by a transition modifying the finite state of V .
The copies that transition from a non-cyclic to a cyclic state are dealt with by
modifying the finite state and increasing the corresponding counter. The copies
in cyclic states are tracked in the counters. Note that if we restrict the graph
to only cyclic states, each state has exactly one incoming and one outgoing
0-edge. For all the copies in cyclic states, the 0-transition is accomplished by
’relabeling’ the counters. This is done by remembering in the the finite state of
V for each loop for one particular state to which counter it corresponds. This
is then shifted in the direction of the 0-transition.

The third step is to perform the Γ transition for the class X. For the copy
of the automaton corresponding to this class, a Γ-transition is performed. That
is, if it is in state q, and δ(q, γ) = q′, then

• If q, q′ are cyclic states, the counter corresponding to q is decreased and
the counter corresponding to q′ is increased.

• If q, q′ are non-cyclic state, a transition that changes the state of V is
made.

• If q is a cyclic state and q′ is a non-cyclic state, the counter corresponding
to q is decreased, and the finite state of V is changed to reflect that the
number of copies in q′ has increased.

• If q is a noncyclic state and q′ is a cyclic state, the transition is simulated
similarly.

This concludes the proof of Theorem 10.

4.3 Restricted double nested loops

We will reduce the reachability problem of Restricted-ND2 programs to the
emptiness problem of EDAs. We will use the following notion: For a given
program P and a given boolean state m, we consider a language of data words
such that the execution of P on a word from this language ends in a global state
whose boolean component is m. More precisely, the language Lm(P) is the set
of data words w, such that there exist an initial state gI and a state g, such
that gI [A] = w, bool(g) = m, and (gI , g) ∈ [[P]].

Theorem 13. Reachability for Restricted-ND2 programs is decidable.

Proof. In this proof, we fix a program P of the following form:

21

for i1 := 1 to length(A) do
P1;
for j1: 1 to length(A) do P2;
P3

where P1, P2, P3 are loop free programs. We present the proof for programs
of this form. It can be extended for general programs using product construc-
tion techniques similar to those from proofs of Theorems 2 and 7. Recall that
according to the definition of Restricted-ND2 programs, the program can test
whether A[i1]=c for some constant c, but not whether A[j1]=c.

Given a boolean state mr, we construct an EDA E = (G,C) such that
w ∈ Lmr (P) iff w ∈ L(E).

The task of the finite state transducer G = (QG,Σ,Γ, δG, qG0 , FG) is to guess
a run of the program P. The output alphabet Γ consists of tuples in Σ×M ×
M × V , where M is the set of boolean states of the program P.

The main idea of the construction is that the transducer G guesses an ac-
cepting run of the outer loop, while the class automaton C checks that the inner
loop can be executed in a way that is consistent with the guess of the transducer.
If a position i is marked with (ai,m,m′, v), the class automaton corresponding
to class X such that i ∈ X will verify that if the inner loop, which ran when
the loop variable of the outer loop pointed to i, was started at m, then it will
finish at m′.

The set V is defined as VC ∪ V ′C ∪ {e}, with e /∈ V . The set VC is the set
of all constants from D that appear in the program P . The set V ′C contains a
symbol c′ for each c ∈ VC . The symbol e will represent the fact that the current
input is not equal to any of the constants in the program.

First, let us summarize the effect of the loop-free subprograms P1 and P3
by relations f1, f3 ⊆ M × (Σ × V) ×M . The programs P1 and P3 can access
the boolean state, read the value [[A[i].s]], compare the value [[A[i].d]] to
constants, and modify the boolean state.

The transducer reads a word a1a2 . . . al ∈ Σ∗, and produces a word b1b2 . . . bl ∈
Γ∗ such that:

• b1 = (a1,m,m′, v), for some m such that there exists a global state gI
such that (bool(gI), (a, v),m) ∈ f1.

• for all i such that 1 ≤ i < l, if bi = (ai,m1,m2, v) and bi+1 = (ai+1,m′1,m′2, v′),
then there exist boolean statesm3, m′1, m

′
2 such that (m2, (ai, v),m3) ∈ f3

and (m3, (ai+1, v′),m′1) ∈ f1.
• bl = (al,m,m′, v), for somem ∈M and v ∈ V such that (m′, (al, v),mr) ∈
f3.

• There is an additional requirement on the fourth component of the tuple
(a,m,m′, v) that will enable the class automaton to verify that the position
of constants has been guessed consistently. The transducer guesses a value
in VC ∪ {e}, but at the rightmost position where it guesses a particular

22

value v ∈ VC , it outputs v′ instead of v. This enables the class automata
to check that each value v ∈ VC has been guessed for at most one class.

It is straightforward to show that this is possible to do with a finite state trans-
ducer.

We now define the class automaton C. The position preserving class string
defined by a data value d looks as follows:

00(a1,m1,m′1, v)000(a2,m2,m
′
2, v) . . . 0(al,ml,m

′
l, v)00

The task of the class automaton is twofold. First, it checks that if we consider
only non-0 elements of the sequence and project to the fourth component of the
tuple, the sequence observed is either of the form e∗ or v∗v′, for a constant
v. This ensures that constants have been guessed consistently, i.e. that each
constant has been assigned to a unique class, and at most one constant has been
assigned to a class.

Second, the class automaton for a class X checks that the inner loops that
ran when i1, the variable of the outer loop, pointed to one of the positions
belonging to X, can run as the transducer has guessed. That is, if the position
i ∈ X has a tuple of the form (ai,mi,m

′
i, v), the inner loop that started at

state mi, with the value of i1 equal to i, will finish at state m′i. We can use
a construction similar to the one from the proof of Theorem 7 to construct
a regular automaton to check this condition. The construction needs to be
extended to allow for expressions that compare the value of the index variables
(e.g. i1 = j1) expressions (which is possible to do here as the nesting depth is
at most 2).

The proof of Theorem 13 gives a decision procedure, but one whose running
time is non-elementary. The reason is that while the problem of reachability in
multicounter automata is decidable, no elementary upper bound is known.

However, the following proposition shows that the problem is at least hard
as the reachability in multicounter automata, which makes it unlikely that a
more efficient algorithm exists. The best lower bound for the latter problem is
Expspace [19].

Proposition 14. The reachability problem for multicounter automata can be
reduced to the reachability problem for Restricted-ND2 programs.

4.4 Undecidable extensions

We show that if we lift the restrictions we imposed on Restricted-ND2 programs,
the reachability problem becomes undecidable.

The following theorem shows that (unrestricted) ND2 programs have an un-
decidable reachability problem. The proof is by reduction from the reachability
problem of two-counter automata. Two-counter automaton has a finite set
of states and two integer counters. The main difference between two-counter
automata and multicounter automata presented before is that a two-counter
automaton can test whether the value of a counter is equal to 0.

23

Theorem 15. The reachability problem for ND2 programs is undecidable.

We omit the proof of the theorem in the interest of space. We note only that
the proof shows that reachability is undecidable even for ND2 programs that do
not use order on the data domain and do not use index or data variables.

We investigate the case of programs obtained by adding access to order on
the data domain and adding data or index variables to Restricted-ND2 programs.
We show that if we add order on the data domain as well as at least one data
variable, the reachability problem becomes undecidable.

Proposition 16. Reachability for Restricted-ND2 programs that use order on D
and at least one data variable is undecidable.

Proof. The proof is by reduction from the Post’s Correspondence Problem, sim-
ilar to proof of Proposition 21 of [5].

A natural question, which is now open, is whether it is possible to add
only one of these features (order on data domain or data (index) variables) to
Restricted-ND2 programs without losing decidability of the reachability problem.

4.5 Expressiveness

In this section, we compare expressiveness of logics and automata on data words
and array-accessing programs. We make our comparisons in terms of languages
of data words these formalisms can define. An EMSO2(≈,+1,⊕1) formula ϕ
defines a set of data words for which it holds. An EDA E defines the language
L(E).

We define the corresponding notion for programs using a final state. Let m
be a boolean state of a program P. Recall that the language Lm(P) is the set of
data words w, such that there exist an initial state gI and a state g, such that
gI [A] = w, bool(g) = m, and (gI , g) ∈ [[P]]. We say that a program P accepts the
language Lm(P), where m is the final state.

The following proposition shows that EDAs and EMSO2(≈,+1,⊕1) are
equally expressive. This means, that somewhat surprisingly, DAs and EDAs
are expressively equivalent.

Proposition 17. EDAs and EMSO2(≈,+1,⊕1) are equally expressive.

Proof. The fact that EDAs are at least as expressive follows from two facts
mentioned in Section 4.2. First, the logic EMSO2(≈,+1,⊕1) and data automata
are equally expressive, and second, for each DA there exists an EDA that accepts
the same language on data words.

To show that EMSO2(≈,+1,⊕1) is at least as expressive as EDAs, we
present a construction that given an EDA E constructs an EMSO2(≈,+1,⊕1)
formula ϕ such that for all words w ∈ D∗, w |= ϕ iff w ∈ L(E).

First, we recall a result of [5] that states that EMSO2(≈,+1,⊕1) and EMSO2(≈
, <,+ω,⊕1) are expressively equivalent. It is thus sufficient to construct an

24

EMSO2(≈, <,+ω,⊕1) formula. The construction is similar to classical simula-
tion of finite state automata in EMSO2(+1).

Due to space constraints, we present only the core part of the proof that is
different from the classical construction. A formula ϕ that simulates an accept-
ing run of E is constructed. It needs to simulate the run of the transducer, as
well as the run of a priori unbounded number of copies of the class automaton.
We present the simulation of the runs of copies of the class automaton C. Note
that we cannot mark (via existentially quantified monadic second order vari-
ables) each position in the string with the state of all the copies of C. Instead,
monadic second order variables will correspond to single states of C, and each
position in a word is marked by exactly one of these state predicates. If the
position p is in class X, it will be marked with a state in which the copy of
C corresponding to X is at p. The task of the first order part of ϕ is then to
verify, for each class, that the labeling encodes an accepting run of the class
automaton. As part of this task, it needs to verify that a correct number of 0
positions appeared between successive class positions. If Pq and P ′q are labels
on successive class positions p and p′, then one needs to verify that the class
automaton that ran with the position-preserving class string as input and thus
saw the 0 symbols will indeed be in the state q′ after processing the string of 0s
followed by the symbol at position p′. The formula that verifies this condition
of course depends closely on the transition relation of the class automaton. We
will not present the proof for a general transition relation, but will use an illus-
trative example. Let us suppose that the class automaton (its 0-transitions) are
as depicted in Figure 1, and let us suppose that position p is labeled by q1 and
position p′ with a Γ symbol a is labeled with a some state s such that there is
a transition δC(q7, a) = s. The formula now needs to check that the distance
between p and p′ is 6 + 5i, for some i, as this would guarantee that the class
automaton transitions to q4 on the initial string. The part of the formula that
checks this property is:

∀x ∀y (x⊕ 1 = y ∧ Pq(x) ∧ Pq′(y))→
(

∧

1≤k≤5
∀y ((x+ k = y)→ (x �≈ y)))∧

C0(x)↔ C1(y) ∧ C1(x)↔ C2(y) ∧ C2(x)↔ C3(y)∧
C3(x)↔ C4(y) ∧ C4(x)↔ C0(y)

where C0, C1, C2, C3, C4 are existentially quantified monadic second order pred-
icates that are used for counting modulo the length of the cycle (which is 5 in
the example). Note that this is an FO2(≈, <,+ω,⊕1) formula.

The following proposition sheds light on the difference between DAs and
EDAs. We saw that DAs and EDAs are expressively equivalent. However,
one difference between EDAs and DAs is that deterministic EDAs are more
expressive than deterministic DAs. It is the nondeterminism that then levels
the difference.

25

Proposition 18. Deterministic EDAs are more expressive than deterministic
DAs.

Proof. Let L be the language defined in Example 5. We showed that there is a
deterministic EDA E such that L(E) = L.

We now show that there is no deterministic DA A = (GA, CA) such that
L(A) = L. The proof will be by contradiction. We suppose that there is such a
data automaton. As the alphabet Σ is a singleton, the Σ part of the data word is
determined by the length of the word in this case. We therefore define data words
only by their data part in the rest of this proof. Let k be the number of states of
the transducer GA. We consider a data word w1 = (d1d2)k+1, where d1, d2 are
values in D. This word is in L. There is therefore an accepting run of GA. Let
us consider the even positions in w1. Clearly, there are two positions 2i and 2j
such that GA is in the same state at 2i as it is at 2j. We now consider the words
w2 = (d1d2)i(d1d2)k+1−j(d1d4)j−i and w3 = (d1d2)i(d1d3)j−i(d1d4)k+1−j . Note
that both w2 and w3 are in L and the run of the transducer GA on both of these
words is the same as on w1, as GA is deterministic and the Σ parts of w1, w2,
and w3 are the same.

Now we look at the word w4 = (d1d2)i(d1d3)j−i(d1d2)k+1−j and show that
it is accepted by E . Again, the run of the transducer is the same as for w1.
The class automaton for the class corresponding to d1 reads the same input
as was the case for w1. The class automaton for the class corresponding to d2
reads the same input as was the case for w2 (here the fact that the transducer
is in the same state at 2i and 2j is used), and the class automaton for the class
corresponding to d3 gets the same input as was the case for w3. Therefore in
each case, the class automaton CA accepts its input. Thus we have reached a
contradiction, as w4 is not in L.

We show that nondeterminism adds to the expressive power of EDAs. We
will use the following example from [5].

Example 6. Let L# be the language of data words defined by the following
properties: (1) str(w) = a∗$a∗, (2) the data value of the $-position occurs
exactly once, and each other data value occurs precisely twice — once before
and once after the $ sign, and (3) the order of data values in the first a-block is
different from the order of data values in the second a-block.

It is possible to show that there exists a nondeterministic EDA for this
language, but not a deterministic DA. This implies the following proposition.

Proposition 19. Deterministic EDAs are strictly less expressive than EDAs.

We will now compare the expressive power of array-accessing programs to
logics and automata on data words. Specifically we will use the logic EMSO2(≈
,+1,⊕1) for comparison. Recall that this logic is expressively equivalent to
data automata. First, we will show that Restricted-ND2 programs are not as
expressive as EMSO2(≈,+1,⊕1).

26

Proposition 20. Restricted-ND2 programs are strictly less expressive than EMSO2(≈
,+1,⊕1).
Proof. For every Restricted-ND2 program P and its boolean state m, we can find
an EMSO2(≈,+1,⊕1) formula ϕ such that w ∈ Lm(P) iff w |= ϕ. The proof of
Theorem 13 gives, for each Restricted-ND2 program P and a boolean state m,
an equivalent EDA E . In the proof of Proposition 17, we have constructed an
EMSO2(≈,+1,⊕1) formula equivalent to a given EDA.

We will now show that there is a language of data words that can be specified
by an EMSO2(≈,+1,⊕1) formula ϕ, but not by a Restricted-ND2 program. We
will use Example 6. We have stated that the language L# can be captured by a
nondeterministic EDA, and thus by an EMSO2(≈,+1,⊕1) formula. There is no
Restricted-ND2 program P that captures L#. The reason is that the programs,
as opposed to transducers in DAs, cannot mark the input array in any way.

Proposition 21. There exists an EMSO2(≈,+1,⊕1) property that is not ex-
pressible by an ND1 program.

Proof. Let us consider the language L of data words w such that every data value
that appears in w appears at least twice. It is easy to construct a (deterministic)
Restricted-ND2 program that checks this property. The property can thus be
specified in EMSO2(≈,+1,⊕1).

We now show that this property cannot be specified by an ND1 program. For
the sake of contradiction, suppose that there exists an ND1 program P with k
index and data variables. Let us consider a word w = w1w2 . . . w2(k+1) of length
2(k + 1), such that corresponding data values are such that for all i ≤ k + 1,
di+1 > di, and there exists a d′i such that di < d

′
i < di+1. The positions greater

than k + 1 are defined by dk+1+i = di. As w is in L, there is an accepting run
of P. Let us consider this run after k+1 steps. At this point, there is one value
dj among the first k + 1 values in w that is not stored in a data variable or
pointed to by an index variable. Let us now construct a word w′ by replacing
the value at k+1+ j by d′j . We can show that P accepts w

′ with the same run,
even though w′ is not in L. We have thus reached a contradiction.

Note that ND1 programs allow order on the data domain, and thus can check
a property specifying that the elements in the input data word are in increasing
order. It is easy to see that this property is not specifiable in EMSO2(≈,+1,⊕1).
However, if we syntactically restrict ND1 programs not to use order on D, they
can be captured by EMSO2(≈,+1,⊕1) formulas. The reason is that ND1 pro-
grams that do not refer to the order on D can be simulated by register automata
introduced in [18]. For every register automaton, there is an equivalent data au-
tomaton ([4]). Another natural question is whether there is an order-invariant
property that can be captured by ND1 programs (that have access to order), but
is not expressible in EMSO2(≈,+1,⊕1). We leave this question for future work.

27

5 Related work

Our results establish connections between verification of programs accessing
arrays and logics and automata on data words. Kaminski and Francez [18]
initiated the study of finite-memory automata on infinite alphabets. They in-
troduced register automata, that is automata that in addition to finite state
have a fixed number of registers that can store data values. The results of
Kaminski and Francez were recently extended in [20, 5, 4, 3]. Data automata
introduced in this line of research were shown to be more expressive than register
automata. Furthermore, the logic EMSO2(≈,+1,⊕1) was introduced, and [5]
shows that EMSO2(≈,+1,⊕1) and data automata are equally expressive. The
reduction from EMSO2(≈,+1,⊕1) to data automata and the fact that empti-
ness is decidable for data automata imply that satisfiability is decidable for
EMSO2(≈,+1,⊕1). We show that Restricted-ND2 programs can be encoded in
EMSO2(≈,+1,⊕1).

However, adding a third variable to the logic or allowing access to order
on data variable makes satisfiability undecidable for the resulting logic, even
for the first order fragment. We show, perhaps somewhat surprisingly, that
the undecidability does not translate into undecidability of reachability for ND1
programs that access order on the data domain and have an arbitrary number
of index and data variables. The results on automata and logics on data words
model were applied in the context of XML reasoning [20] and extended temporal
logics [9]. The connection to verification of programs with unbounded data
structures is the first to the best of our knowledge.

Fragments of first order logic on arrays have been shown decidable in [7, 16, 1,
6]. These fragments do not restrict the number of variables (as was the case with
EMSO2(≈,+1,⊕1)), but restrict the number of quantifier alternations. These
papers focus on theory of arrays, rather than on analysis of array-accessing
programs. In particular, reachability in programs (that contain loops) is not
reducible to these first-order fragments.

Static analysis of programs that access arrays is an active research area, with
recent results including [12, 15, 1]. The approach consists in finding inductive
invariants for loops using abstraction methods, such as abstract domains that
can represent universally quantified facts [15] and a predicate abstraction ap-
proach to shape analysis [1]. In contrast, our results yield decision procedures
for array-accessing programs, with an interesting feature in the context of pre-
vious work being that our method does not need to discover the loop invariants
explicitly. However, the methods based on abstraction are applicable to a richer
class of programs.

6 Conclusion

We have presented decision procedures for reachability for classes of array-
accessing programs. The arrays considered are unbounded in length and have
elements from a potentially infinite ordered domain. For programs with non-

28

nested loops, we showed that the problem is Pspace-complete, i.e. it is in the
same complexity class as the reachability problem for boolean programs, which
is used in standard software verification tools. Therefore our decision procedure,
coupled with abstract interpretation techniques, can potentially be the basis of
a software model checking tool that handles data structures with potentially
unbounded size.

Furthermore, we have shown that if the data domain is bounded, the problem
is decidable in Expspace for programs with arbitrary nesting of loops (but
without index variables). We have established connection to well-studied logics
(EMSO2(≈,+1,⊕1)) and automata on data words, and we have shown that the
reachability problem is decidable for programs with doubly-nested loops, under
some restrictions.

We will investigate the extensions of our decidability results to classes of
programs that access a single array. These extensions include (1) programs ac-
cessing data structures other than the array, (2) programs that modify the data
structure, (3) program accessing more than one data structure, and finally, (4)
program with procedures. The extension to linked lists seems straightforward.
We will study the extension to data structures with more successors, such as
trees. The proof of decidability of the reachability problem for programs with
non-nested loops can be extended to programs that modify the contents of the
array. However, the proofs of the other other two main decidability results
cannot be extended in a straightforward way, and the question of decidability
remains open.

We also plan to implement the decision procedure introduced in Section 3.1
and to test its performance, on one hand on programs that directly fall within the
fragment (such as Java methods from J2ME midlets for mobile devices, as well
as from standard Java library), and, using appropriate abstraction techniques,
on larger programs.

References

[1] I. Balaban, A. Pnueli, and L. Zuck. Shape analysis by predicate abstraction. In
Proc. of VMCAI’05, pages 164–180, 2005.

[2] T. Ball and S. Rajamani. The SLAM project: debugging system software via
static analysis. In Proc. POPL’02, pages 1–3, 2002.

[3] H. Björklund and M. Bojanczyk. Shuffle expressions and words with nested data.
In Proc. of MFCS’07, pages 750–761, 2007.

[4] H. Björklund and T. Schwentick. On notions of regularity for data languages. In
Proc. of FCT’07, pages 88–99, 2007.

[5] M. Bojanczyk, A. Muscholl, T. Schwentick, L. Segoufin, and C. David. Two-
variable logic on words with data. In Proc. of LICS’06, pages 7–16, 2006.

[6] A. Bouajjani, P. Habermehl, Y. Jurski, and M. Sighireanu. Rewriting systems
with data. In Proc. of FCT’07, pages 1–22, 2007.

[7] A. Bradley, Z. Manna, and H. Sipma. What’s decidable about arrays? In Proc.
of VMCAI’06, pages 427–442, 2006.

29

[8] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
Proc. of POPL’77, pages 238–252, Los Angeles, California, 1977.

[9] S. Demri and R. Lazić. LTL with the freeze quantifier and register automata. In
Proc. of LICS ’06, pages 17–26, 2006.

[10] J. Gischer. Shuffle languages, Petri nets, and context-sensitive grammars. Com-
mun. ACM, 24(9):597–605, 1981.

[11] N. Globerman and D. Harel. Complexity results for two way and multipebble
automata and their logics. Theoretical Computer Science, 169(2):161–184, 1996.

[12] D. Gopan, T. Reps, and M. Sagiv. A framework for numeric analysis of array
operations. In Proc. of POPL ’05, pages 338–350, 2008.

[13] S. Graf and H. Säıdi. Construction of abstract state graphs with pvs. In Proc. of
CAV’07, pages 72–83, 1997.

[14] B. Gulavani, T. Henzinger, Y. Kannan, A. Nori, and S. Rajamani. Synergy: a
new algorithm for property checking. In FSE’06, pages 117–127, 2006.

[15] S. Gulwani, B. McCloskey, and A. Tiwari. Lifting abstract interpreters to quan-
tified logical domains. In Proc. of POPL ’08, pages 235–246, 2008.

[16] P. Habermehl, R. Iosif, and T. Vojnař. What else is decidable about integer
arrays? In Proc. of FoSSaCS’08, pages 474–489, 2008.

[17] T. Henzinger, R. Jhala, R. Majumdar, G. Necula, G. Sutre, and W. Weimer.
Temporal-safety proofs for systems code. In Proc. of CAV’02, pages 526–538,
2002.

[18] M. Kaminski and N. Francez. Finite-memory automata. Theoretical Computer
Science, 134(2):329–363, 1994.

[19] R. Lipton. The reachability problem requires exponential space. Technical Report
Dept. of Computer Science, Research report 62, Yale University, 1976.

[20] F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings over
infinite alphabets. ACM Trans. Comput. Logic, 5(3):403–435, 2004.

[21] C. Papadimitriou. Computational Complexity. Addison-Wesley Publishing, Read-
ing, MA, USA, 1994.

30

	Algorithmic Analysis of Array-Accessing Programs
	Recommended Citation

	Algorithmic Analysis of Array-Accessing Programs
	Abstract
	Comments

	viewcontent.pdf

