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1. Introduction 

Silicon dioxide can exist in many polymorph modifications. 

Polymorph modifications based on silicon sp3 hybridization 

comprise a family of tetrahedron structured materials, which 

could be considered as one of the most investigated systems 

from fundamental and from practical points of view. The dense 

(4.28 g cm—3) octahedron structured polymorph modification 

named stishovite, however, is not yet well studied. The 

remarkable property of stishovite is its hardness (29.5 GPa) in 

comparison to α-quartz (9.81 GPa).[1] Also, unlike quartz, 

stishovite does not react with fluoric acid. On the other hand, 

stishovite is metastable. Heating at 825 K causes an irreversible 

amorphization.[2] 

The main structural element of the dense silicon dioxide – 

stishovite – corresponds to silicon hybridization – d2sp3, 

resulting in an octahedral surrounding of silicon with oxygen 
ions. Oxygen ions are threefold coordinated. 

 
In stishovite samples (synthetic single 

crystals and Meteor Crater Arizona “natu- 

ral” polycrystalline powder) two main 

luminescence bands have been observed: 

a blue band at about 3 eV with a time 

constant of about 18 μs and a UV band at 

about 4.75 eV with a time constant of 

some ns.[3–5] Besides, luminescence with 

series of sharp lines in the red spectral 

region also has been observed. It was 

explained as a quasi-molecular lumines- 

cence center due to the presence of carbon 

impurities.[4] Also, OH groups have been 

found in both samples in different con- 

centrations.[4,5] In Arizona stishovite its 

concentration was much higher.[5] 

Decay kinetic curves at different temper- 

atures have revealed some peculiarities in 

the shape of different temperature depend- 

ences under photo and X-ray excitations.[3] 

The effects were interpreted as lumines- 

cence center interaction with the surround- 

ing interstitial defects, which modify 

properties of the luminescence center. It 

was assumed that nearest defects modulates radiative transition 

probabilities provoking deviations the kinetic curve from 

exponential decay. The X-ray excitation stimulates the creation 

of complex defect at temperature above 100 K leading to a 

decrease of luminescence intensity excited in electron-hole 

recombination.[7] Photoexcitation does not provide an efficient 

charge release and, therefore, the luminescence intensity is less 

dependent on temperature than that under X-ray excitation. 

In α-quartz crystal no similar to stishovite luminescence was 
observed in the as-received samples. However, in the case of 

oxygen deficient silica glass similar to stishovite luminescence 

with two bands – one slow in the visible (2.7 eV) and one fast in the 
UV (4.4 eV) spectral region has been known for a long time.[6] In 

the case of α-quartz crystal similar to stishovite luminescence can 
be created by dense electron beam irradiation at low temperatures 

or destructive neutron and γ- irradiation at room temperature.[7,8] 
Previous electron spin resonance (ESR) studies on irradiated 

samples of stishovite have reported a resonance at g 2.003, 

whereas  in-depth  ESR  studies   of  paramagnetic  defects   in 

   synthetic samples have identified H0, Al-O2
3—, Ti3þ, W5þ Cr3þ, 

and Cr5þ centers in stishovite.[9–12] With the exception of Cr3þ, 

these impurities are effective spin S 1/2 systems with 

anisotropic components of the g tensor and characteristic 

hyperfine (HF) interaction with the respective nucleus. ESR 
studies of non-irradiated as received stishovite crystal were not 
found in the literature. 

An electron spin resonance (ESR) and photoluminescence signal is observed 

in the as grown single crystal of stishovite indicating the presence of defects 

in the non-irradiated sample. The photoluminescence of the as received 

stishovite single crystals exhibits two main bands – a blue at 3 eV and an UV 

at 4.75 eV. Luminescence is excited in the range of optical transparency of 

stishovite (below 8.75 eV) and, therefore, is ascribed to defects. A wide range 

of decay kinetics under a pulsed excitation is observed. For the blue band 

besides the exponential decay with a time constant of about 18 μs an 

additional ms component is revealed. For the UV band besides the fast 

component with a time constant of 1–3 ns a component with a decay in tens 

μs is obtained. The main components (18 μs and 1–3 ns) possess a typical 

intra-center transition intensity thermal quenching. The effect of the additional 

slow component is related to the presence of OH groups and/or carbon 

molecular defects modifying the luminescence center. The additional slow 

components exhibit wave-like thermal dependences. Photo-thermally stimulated 

creation–destruction of the complex comprising host defect and interstitial 

modifiers explains the slow luminescence wave-like thermal dependences. 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by E-resource repository of the University of Latvia

https://core.ac.uk/display/334782141?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


    

KrF LNT 

high resolution 

KrF RT 

F
2 
LNT 

F
2 
RT 

ArF LNT 

ArF RT 

= 

· · 

×

 

Previously we have investigated the luminescence kinetics of 

stishovite mainly with a photomultiplier (PM) in the current 

regime by recording the decay curves with an oscilloscope. The 

photon counting method is more sensitive and for a lumines- 

cence signal with a long duration it is preferable. 

In the present article we report the observation of an 

additional slow decay component in stishovite luminescence and 

the observation of an ESR signal in as received crystal. Decay 

curves in the range of ms have been obtained for the blue band 

and in μs for the UV band. Spectral and thermal dependences of 

this additional luminescence and the newly discovered ESR have 

been investigated to elucidate their nature. 

 

 

2. Experimental Procedure 

Single crystals of stishovite have been grown from hydrothermal 

solution in the SiO2–H2O system under a pressure of 9–9.5 GPa 

within a temperature range of 1170–770 K.[13] The natural quartz 

crystal powder was taken as a raw material. So, it is possible that 
the impurities of natural quartz could be incorporated into 

stishovite synthetic crystal. However, purification during the 

crystallization could have occurred as well and the quantity of 

impurities in synthetic stishovite could be smaller than those in 
the initial natural quartz powder. The crystals were grown in a 
platinum container directly contacting a graphite heater, which 
is the source of carbon impurities in stishovite single crystal. The 

samples under investigation were small, optically transparent 

single-crystals with the dimensions of about 0.2–0.4 0.6 0.9 

mm3. The small size of the samples is a source of experimental 

difficulties. The samples were kept in copper holders covered 

with an indium layer containing a hole into which the samples 

were pressed, avoiding slits, which would let any stray light 
through. The excitation was made from one side of the holder 

and the detection – from the other, excluding the possibility of 

luminescence due to contamination on the surface of the holder. 

For ESR measurements a small crystal was merged into drop 

temperatures. The lower temperature limit corresponds to the 

temperature of liquid nitrogen under the pump. 

Luminescence was detected with the help of a grating 

monochromator (MCD-2) with slit width of about 1 mm 

corresponding to 1.5 nm spectral resolution for time resolved 

spectra and steady state spectra have been measured with CCD 

of Hamamatsu mini spectrometer C10082CAH. Luminescence 

measurement details are described in.[3–5] The measured curves 

are presented in the figures as recorded, therefore, they reflect 

the level of errors. 

A modified X-band RE 13–06 spectrometer (microwave 
frequency 9.1 GHz with 0.001 GHz precision; magnetic field 

modulation 100 kHz) was used for ESR spectra measurements at 

77 K. The ESR spectra angular variations of the single crystal 

sample were made around an arbitrary rotation axis at a uniform 

angle interval of 5○ with an uncertainty of 1○. For calibration 

purposes a DPPH reference sample was used. 

 

3. Results 

3.1. Photoluminescence 

 
With the use of photon counting with the H8259-02 module and 

oscilloscope we have detected luminescence of stishovite with 

duration in the range of ms. The corresponding decay curves are 

presented below. The PL spectra, which were obtained by 

integration of the decay curves, are shown in Figure 1. Excitation 

was performed with excimer lasers KrF (248 nm), ArF (193 nm), 

and F2 (157 nm). It is seen that the time-resolved PL spectra are 

similar under different excitation wavelengths and temper- 

atures. They are also similar to the previously published data.[4] 

Inserts in Figure 2 show the decay curves for different 

temperatures. There is an exponential decay at 80 K similar to the 

previous investigations (left insert). At 120 K a slow component 

UHU-plus transparent glue, kept on thin glass tube. 

Another studied sample was a shock-wave-created stishovite  

in powder form found at the Meteor Crater, Arizona.[14] We 

pressed the powder into a plate covered with indium. The 

dimensions of the sample surface were about 8 8 mm. All the 

samples have been studied previously.[3–5] 

Photon counting head Hamamatsu H8259-02 is used. 

Luminescence decay curves were recorded by the Tektronics 

TDS 2022B oscilloscope and/or Picoscope 2208, each curve 

being averaged over 128 pulses or more. Time-resolved 

luminescence spectra were extracted from the decay curves 

measured at the specified wavelength. The corresponding decay 

curve was integrated over the measured time interval. ArF  

(193 nm wavelength), KrF (248 nm wavelength) and F2 (157 nm 

wavelength) excimer lasers, model PSX-100 of Neweks (Estonia) 
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with pulse energy of up to 5 mJ and pulse duration of 5 ns were 

used to excite luminescence. Samples were illuminated by 

unfocused beams ensuring the predominance of single photon 

excitation. Luminescence emission was collected in a direction 

perpendicular to the excitation laser  beam.  The  samples  

were carefully cleaned and mounted on a holder, no glue was 

used. Measurements were performed at 60–350 K sample 
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Figure 1. Time-resolved photoluminescence spectra of stishovite single 

crystal under excimer laser excitation at 293 and 80 K. Each point 

corresponds to the integrated decay kinetics curve. The curves have been 

measured with the photon counting method. 
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Figure 2. Time-resolved photoluminescence spectra of stishovite single 

crystal under pulses of excimer ArF laser excitation at 120 and 80 K. Decay 
curves were obtained with PM in the current regime for μs time range and 

with photon counting module for ms time range. Steady state spectra 

have been measured with CCD of Hamamatsu minispectrometer. Inserts 

– the decay kinetic curves. Left – for the μs time range, middle and right – 

for the ms time range. The right insert shows decay kinetics measured in 

the range of sharp luminescence lines ascribed to carbon related 

molecular centers. 

 
 

appears, visible in the insert in the middle. The insert on the 

right shows decay of PL in the 800 nm range, which belongs to 

carbon impurity-related centers, as was interpreted previously.[5] 

In Figure 3 the PL decay curves for the high temperature range 

are shown. The decay is much slower than 18 μs and is non- 

exponential. The intensity decreases with heating up to 500 K. 

In Figure 4 the intensity of slow PL obtained by the integration 

of  decay  curves  at  each  temperature  is  demonstrated.  The 

Figure 4. Time-resolved temperature dependences of the blue photo- 

luminescence of stishovite measured with the photon counting method in 

the time range of 3 ms (big closed squares for intensity and open squares 

for time constant) and in the time range of 18 μs (small closed squares) 

under ArF laser excitation. Some points with the closed squares were 

measured for Arizona “natural” stishovite with the use of KrF laser. The 

lines correspond to X-ray excited luminescence intensity thermal 

dependences (line – UV band, dash line – blue band). 

 

 
Temperature dependences of X-ray excited luminescence of 

stishovite show some kind of anti-correlation with that of the 

slow component. In the X-ray excited luminescence there is drop 

at 100 K, which anti-correlates with the increase of the slow PL 

intensity. A shift in thermal position between slow component 

time constant and corresponding intensity is observed (Figure 4 

open squares). It is explained as acceleration of electronic 

transitions in a complex comprising defect–modifier with 

increase of the temperature. It is presumed that this complex is 

created in photo-thermally stimulated process. A decrease in 

intensity corresponds to process of destruction of complex. Two 

peaks, perhaps, correspond to different modifiers. The decay 

thermal dependence of the time-resolved 18 μs component 

intensity is presented as well. These dependences are completely 

different. The thermal dependence of the 18 μs component is 

monotonous without any peaks as seen for the slow component. 

kinetics curves corresponding to 130, 210, and 270 K temper- 

atures are presented in Figure 5. It is seen that at 130 and 270 K 
the decay possesses intensive slow component and at 210 K its 

intensity is diminished. In the Figure 6 the decay curves for the 
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Figure 3. Photoluminescence decay curves of stishovite single crystal 

excited with pulses of ArF excimer laser in the range of temperatures 

above 300 K measured with the photon counting method. 
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Figure 5. Slow blue PL decay curves measured at temperatures of maxima 

(130 and 270 K) and minimum (210 K) of the dependence presented in 

Figure 4 for stishovite single crystal excited with ArF laser. 
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Figure 6. Photoluminescence decay curves of stishovite single crystal 

excited with pulses of KrF excimer laser in the 80–375 K range of 

temperatures measured with the photon counting method. Insert – 

comparison of thermal dependences obtained with the use of different 

excimer lasers in the ms and μs range of time. 

 
 

slow PL excited with KrF laser are shown. The decay is fast at 

80 K. Increase of temperature results in increase of the slow PL 

intensity in the ms time range as in the case of ArF laser. The μs 

component behaves as that excited with ArF laser, see Figure 6 

left insert. Low excitation power of F2 laser provides mainly PL in 

μs time range. Its thermal dependence shows the usual increase 

of intensity with cooling without any wave-like peculiarities. 

In Figure 7 the UV band detected by the photon counting 
method is presented. It is seen that there is a slow component 

detected in the μs time range. This component is absent at 80 K, 

similarly to slow component of the blue band, and only fast 

component in ns range of time is observed. The component with 

decay time in the ms range is not detected for the UV band. In 

Figure 8 afterglow curves after X-ray irradiation are presented for 

 
 

 

 
 

Figure 7. Time-resolved luminescence spectra measured with the photon 

counting method for the UV band of stishovite single crystal. Excitation – 

ArF laser. Insert: measured decay curve and exponential approximation 

with two exponents at T ¼ 290 K. 
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Figure 8. Afterglow kinetics after X-ray irradiation. Big closed squares – 

UV band and small closed squares – blue band. T ¼ 80 K. 

 

the blue and UV bands of stishovite. For afterglow a good  

correspondence in the kinetics of blue and UV bands is 

observed, which does not take place in Figures 3, 5, 6 for the blue 

band and in Figure 7 for the UV band photoluminescence. 

Afterglow is a pure recombinative process of electrons and holes 

and in recombination the behavior of both bands is practically 

identical. From this we could confirm the previous assumption 

that both bands belong to the same luminescence center.[3] The 

difference in slow kinetics for the blue and UV bands under laser 

excitation could mean that process of luminescence excitation is 

not a recombination of released electrons and holes and can be 

attributed to intra-center process of excitation. 

 
 

3.2. Electron Spin Resonance 

 
For the non-irradiated stishovite crystal an angle-dependent ESR 

signal was detected at 77 K. The ESR spectra at some selected 

orientations are shown in Figure 9. Due to the small sample 

dimensions and technical limitations of the apparatus the signal- 
to-noise ratio is poor. The resonance position roadmap is shown 

in Figure 10. The isotropic resonance at geff 2.003 originates 

from the sample holder. 

In our case, the HF structure could not be resolved in the 
spectra, which hinders the attribution of the observed signal to a 

particular impurity ion. Also, no set of spin-Hamiltonian (SH) 
parameters from is able to reproduce the experimental ESR 

spectra.[10–12] In a simplified approach, the observed resonances 

could be accounted for in a S ¼ 1/2 model and axial SH: 

H ¼ β
h

g?

.
BxSx þ BySy

Σ 
þ gjjBzSz

i 
ð1Þ 

where β is the Bohr magneton. From the magnetic field range 
of experimental resonances in Figure 10 it is possible to 

evaluate  the  limits  of  principle  g   values  (g1   2.06  and  

g2 2.00), however, a correct assignment to the parallel and 

perpendicular components of the g tensor would require a 

precise knowledge of the sample’s crystallographic axis 

orientations in respect to B. 
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Figure 9. X-band ESR spectra of stishovite at selected crystal orientations. 

 

 
4. Discussion 

In the as-grown single crystals of stishovite photoluminescence 
and ESR signals of defects existing in the samples have been 
obtained. The defects have been created during the crystal 
growth and perhaps are of the same nature and belong to host 

material. ESR could be explained as trapped hole centers O— and 

O2— are typical defects in oxides, however, in crystals with rutile 

structure their maximal g value is usually around geff 2.03.[15,16] 
Additionally, sample irradiation with UV or X-rays may be 
necessary prior to the detection of EPR spectra. In the crystals of 

KTiOAsO4 Mnþ–O—–M(n—1)þ (Mnþ – lattice cation; M(n—1)þ – 

impurity cation) paramagnetic centers have the g|| component in 

the 2.06–2.07 region, however, these too are radiation induced 
defects, which are unstable at room temperature.[17] Similar  

principle g values have also been observed in non-irradiated 
single-crystal citrine quartz samples, where the centers were 

assigned as O2
3— type defects.[18] However, we cannot actually 

say more about the observed paramagnetic centers in stishovite, 

therefore, further investigations are required. 

In the previous studies of stishovite luminescence we 

observed at temperatures near 290 K the luminescence decay 

of the blue band was strongly non-exponential. After cooling 

down to 80 K the main component of the decay became 

exponential with some peculiarities in the initial stage of decay as 

shown in Figure 11.[3,4] As it can see from this figure, at 130 K 

some modulations appear in initial part of the decay curve (range 

of hundreds of ns). We ascribed these modulations to the 

interaction of luminescence center with the surrounding 

interstitial defects such as OH groups or even water molecules 

as well as with molecular defects related to carbon impurities. [3] 

Now we performed more detailed studies of luminescence 

decay in longer time range and found an additional slow decay. 

So, besides the already studied luminescence of stishovite single 

crystal with a blue band (3,1 eV), characterized with the time 

constant of 18 μs, and a UV band (4.75 eV) with time constant in 

the ns range, we have found the slower components: that in the 

ms range for the blue band and in tens of μs for the UV band (see 

Figures 3, 5, 6, and 7). It should be noted, that the detection of the 

faster luminescence was performed in “current” regime of PM. 

The slowest component was difficult to detect by this method. 

For the detection of the slow component a photon counting 

method was applied. Use of the photon counting regime of PM 

allows detection of the slow luminescence. However, the regime 

of photon counting incorrectly detects luminescence in the faster 

range because of multi photon pulse is counted as one photon 

pulse. As a result in the case of multiphoton pulses we observe a 

strongly distorted decay curve. Therefore, here only one photon 

pulses related kinetics in ms range of time are discussed. 
We can assume that existence of the slow decay besides the 

strong faster component could be due to the participation of a 

center in electron-hole recombination processes. However, as it 

was shown in Figure 8, in the case of electron-hole recombina- 

tion such slow decay should be similar for blue and UV bands, 

which was the case of X-ray excitation of luminescence. In spite 

of observation of the slow decay under excimer laser excitation 

the decay was different for the blue (Figures 3, 5, and 6) and for 

the UV (Figure 7) bands. It means that such behavior does not 
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Figure 10. The ESR resonance position roadmap of stishovite at 77 K 

around an arbitrary rotation axis. The filled circles originate from the 

sample holder. 
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Figure 11. Blue PL decay kinetic curves of stishovite single crystal excited 

with ArF excimer laser at different temperatures. PM in current regime. 
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correspond to recombination process related to the trapping and 

recombination of charge carriers. A possible explanation of the 
observed effect of additional slow luminescence could be in the 

modification of the center at different temperatures. And that 

modified center possesses the blue band in ms range of time and 

UV in μs range. Different decay of blue and UV bands of 

modified center witness of intra-center excitation of such a 

complex. In pure recombination process kinetics of both bands 

are very similar, Figure 8. Possible modification could be related 

to the presence of OH groups and/or carbon related molecular 
defects, as it was assumed in the interpretation of previous  

data.[3] The slow decay exceeding the time constant of the center 
at low temperatures and wave-like thermal dependences of slow 
component intensity and time duration can be explained by 

photo-thermally stimulated creation–destruction of complex 

defect–modifier. Such creation of complex should be responsible 

for the decrease of X-ray luminescence intensity above 100 K 
anti-correlated with increase of slow luminescence, Figure 4.[3] 
The complex creation is photo-thermally stimulated. This is seen 

on difference of slow PL intensity and time constant, Figure 4. It 
is explained as acceleration of transitions in excited complex with 
increase of the temperature. So, there are three processes 
leading to luminescence of stishovite. First are intra-center 

electronic transitions in a defect providing two luminescence 

bands: a blue one due to triplet–singlet transitions and an UV 

band due to singlet–singlet transition. In that, stishovite 

luminescence is similar to luminescence of oxygen-deficient 

created complex provides slow luminescence excited in an intra- 

center process. 
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: 

silica glass and heavily irradiated α-quartz crystal.[3,5] Second    

process is due to intra-center transitions modulated by nearest 

defects, possibly OH and/or carbon related defect, and the third 

one is recombination luminescence due to photo-stimulated 

detachment and back recombination of nearest defect which is 

object of actual investigation.[4] Two last processes are possible in 

oxygen-deficient  silica  glass  and  heavily  irradiated  α-quartz 
crystal, however not yet studied. 

 

 
5. Conclusions 

The defects of stishovite are observed by ESR and luminescence 

methods. They have been created during the crystal growth and 

perhaps are of the same nature. 

The discovered ESR signal does not correlate with known 

signals of impurity defects in stishovite. The evaluated g  

values range from 2.00 to 2.06. Similar principle g values have 
been observed for oxygen ion related paramagnetic centers. 

Stishovite single crystal luminescence possesses an additional 

slower component in the ms range for blue band and in tens of 

μs for the UV band. The effect of additional slow component 

could be related to the presence of OH groups and/or carbon 

related  molecular  defects  modifying  the  luminescence 

center and creating a complex defect. This complex is affected 

to photo-thermal creation–destruction. It is assumed that the 
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