280 research outputs found

    A versatile microarray platform for capturing rare cells

    Get PDF
    Analyses of rare events occurring at extremely low frequencies in body fluids are still challenging. We established a versatile microarray-based platform able to capture single target cells from large background populations. As use case we chose the challenging application of detecting circulating tumor cells (CTCs) - about one cell in a billion normal blood cells. After incubation with an antibody cocktail, targeted cells are extracted on a microarray in a microfluidic chip. The accessibility of our platform allows for subsequent recovery of targets for further analysis. The microarray facilitates exclusion of false positive capture events by co-localization allowing for detection without fluorescent labelling. Analyzing blood samples from cancer patients with our platform reached and partly outreached gold standard performance, demonstrating feasibility for clinical application. Clinical researchers free choice of antibody cocktail without need for altered chip manufacturing or incubation protocol, allows virtual arbitrary targeting of capture species and therefore wide spread applications in biomedical sciences

    Little impact of Three Gorges Dam on recent decadal lake decline across China's Yangtze Plain

    Get PDF
    The ubiquitous lakes across China's Yangtze Plain (YP) are indispensable freshwater resources sustaining ecosystems and socioeconomics for nearly half a billion people. Our recent survey revealed a widespread net decline in the total YP lake inundation area during 2000–2011 (a cumulative decrease of ∼10%), yet its mechanism remains contentious. Here, we uncover the impacts of climate variability and anthropogenic activities including i) Yangtze flow and sediment alterations by the Three Gorges Dam (TGD) and ii) human water consumption in agricultural, industrial, and domestic sectors throughout the downstream Yangtze Basin. Results suggest that climate variability is the dominant driver of this decadal lake decline, whereas studied human activities, despite varying seasonal impacts that peak in fall, contribute marginal fraction (∼10–20% or less) to the interannual lake area decrease. Given that the TGD impacts on the total YP lake area and its seasonal variation are both under ∼5%, we also dismiss the speculation that the TGD might be responsible for evident downstream climate change by altering lake surface extent and thus open water evaporation. Nevertheless, anthropogenic impacts exhibited a strengthening trend during the past decade. Although the TGD has reached its full-capacity water regulation, the negative impacts of human water consumption and TGD-related net channel erosion are already comparable to that of TGD's flow regulation, and may continue to grow as crucial anthropogenic factors to future YP lake conservation

    Little impact of Three Gorges Dam on recent decadal lake decline across China's Yangtze Plain

    Get PDF
    The ubiquitous lakes across China's Yangtze Plain (YP) are indispensable freshwater resources sustaining ecosystems and socioeconomics for nearly half a billion people. Our recent survey revealed a widespread net decline in the total YP lake inundation area during 2000–2011 (a cumulative decrease of ∼10%), yet its mechanism remains contentious. Here, we uncover the impacts of climate variability and anthropogenic activities including i) Yangtze flow and sediment alterations by the Three Gorges Dam (TGD) and ii) human water consumption in agricultural, industrial, and domestic sectors throughout the downstream Yangtze Basin. Results suggest that climate variability is the dominant driver of this decadal lake decline, whereas studied human activities, despite varying seasonal impacts that peak in fall, contribute marginal fraction (∼10–20% or less) to the interannual lake area decrease. Given that the TGD impacts on the total YP lake area and its seasonal variation are both under ∼5%, we also dismiss the speculation that the TGD might be responsible for evident downstream climate change by altering lake surface extent and thus open water evaporation. Nevertheless, anthropogenic impacts exhibited a strengthening trend during the past decade. Although the TGD has reached its full-capacity water regulation, the negative impacts of human water consumption and TGD-related net channel erosion are already comparable to that of TGD's flow regulation, and may continue to grow as crucial anthropogenic factors to future YP lake conservation

    Isomer shift and magnetic moment of the long-lived 1/2+^{+} isomer in 3079^{79}_{30}Zn49_{49}: signature of shape coexistence near 78^{78}Ni

    Full text link
    Collinear laser spectroscopy has been performed on the 3079^{79}_{30}Zn49_{49} isotope at ISOLDE-CERN. The existence of a long-lived isomer with a few hundred milliseconds half-life was confirmed, and the nuclear spins and moments of the ground and isomeric states in 79^{79}Zn as well as the isomer shift were measured. From the observed hyperfine structures, spins I=9/2I = 9/2 and I=1/2I = 1/2 are firmly assigned to the ground and isomeric states. The magnetic moment μ\mu (79^{79}Zn) = −-1.1866(10) μN\mu_{\rm{N}}, confirms the spin-parity 9/2+9/2^{+} with a νg9/2−1\nu g_{9/2}^{-1} shell-model configuration, in excellent agreement with the prediction from large scale shell-model theories. The magnetic moment μ\mu (79m^{79m}Zn) = −-1.0180(12) μN\mu_{\rm{N}} supports a positive parity for the isomer, with a wave function dominated by a 2h-1p neutron excitation across the N=50N = 50 shell gap. The large isomer shift reveals an increase of the intruder isomer mean square charge radius with respect to that of the ground state: δ⟨rc2⟩79,79m\delta \langle r^{2}_{c}\rangle^{79,79m} = +0.204(6) fm2^{2}, providing first evidence of shape coexistence.Comment: 5 pages, 4 figures, 1 table, Accepeted by Phys. Rev. Lett. (2016

    Characterization of different CTC subpopulations in non-small cell lung cancer

    Get PDF
    Circulating tumour cells (CTCs) serve as valuable biomarkers. However, EpCAM positive CTCs are less frequently detected in NSCLC patients compared to other epithelial tumours. First, EpCAM protein expression was analysed in primary and metastatic lung cancer tissue. In both groups 21% of the samples were EpCAM negative. Second, the CellSearch system identified 15% of patients (n = 48) as CTC positive whereas a multiplex RT-PCR for PIK3CA, AKT2, TWIST, and ALDH1 following EGFR, HER2 and EpCAM based enrichment detected CTCs in 29% of the patients. Interestingly, 86% of CTC positive patients were found to express ALDH1. Only 11% of the patients were CTC-positive by both techniques. CTC positivity was associated with patient disease state when assessed by the multiplex RT-PCR assay (p = 0.015). Patients harbouring tumours with an altered EGFR genotype were more frequently CTC-positive compared to patients with EGFR wildtype tumours. In subsets of patients, CTCs were found to express genes involved in resistance to therapy such as HER3 and MET. In conclusion, using multiple targets for CTC capture and identification increases the sensitivity of CTC detection in NSCLC patients, which can be explained by the presence of different CTC subtypes with distinct molecular features

    Existence of the magnetization plateau in a class of exactly solvable Ising-Heisenberg chains

    Full text link
    The mapping transformation technique is applied to obtain exact results for the spin-1/2 and spin-S (S=1/2,1) Ising-Heisenberg antiferromagnetic chain in the presence of an external magnetic field. Within this scheme, a field-induced first-order metamagnetic transition resulting in multiplateau magnetization curves, is investigated in detail. It is found that the scenario of the plateau formation depends fundamentally on the ratio between Ising and Heisenbrg interaction constants, as well as on the anisotropy strength of the XXZ Heisenberg interaction.Comment: 16 pages, 10 figures, submitted to J. Phys: Condens. Matte
    • …
    corecore