89 research outputs found
Space charge in drift chambers operated with the Xe,CO2(15%) mixture
Using prototype modules of the ALICE Transition Radiation Detector we
investigate space charge effects and the dependence of the pion rejection
performance on the incident angle of the ionizing particle. The average pulse
height distributions in the drift chambers operated with the Xe,CO2(15%)
mixture provide quantitative information on the gas gain reduction due to space
charge accumulating during the drift of the primary ionization. Our results
demonstrate that the pion rejection performance of a TRD is better for tracks
which are not at normal incidence to the anode wires. We present detailed
simulations of detector signals, which reproduce the measurements and lend
strong support to our interpretation of the measurements in terms of space
charge effects.Comment: 18 pages, 10 figures, accepted for publication in Nucl.Instrum.Meth.
A. Data files available at http://www-alice.gsi.de/tr
Energy loss of pions and electrons of 1 to 6 GeV/c in drift chambers operated with Xe,CO2(15%)
We present measurements of the energy loss of pions and electrons in drift
chambers operated with a Xe,CO2(15%) mixture. The measurements are carried out
for particle momenta from 1 to 6 GeV/c using prototype drift chambers for the
ALICE TRD. Microscopic calculations are performed using input parameters
calculated with GEANT3. These calculations reproduce well the measured average
and most probable values for pions, but a higher Fermi plateau is required in
order to reproduce our electron data. The widths of the measured distributions
are smaller for data compared to the calculations. The electron/pion
identification performance using the energy loss is also presented.Comment: 15 pages, 10 figures, accepted for publication in Nucl.Instrum.Meth.
Observation of Non-Exponential Orbital Electron Capture Decays of Hydrogen-Like Pr and Pm Ions
We report on time-modulated two-body weak decays observed in the orbital
electron capture of hydrogen-like Pr and Pm
ions coasting in an ion storage ring. Using non-destructive single ion,
time-resolved Schottky mass spectrometry we found that the expected exponential
decay is modulated in time with a modulation period of about 7 seconds for both
systems. Tentatively this observation is attributed to the coherent
superposition of finite mass eigenstates of the electron neutrinos from the
weak decay into a two-body final state.Comment: 12 pages, 5 figure
Initial Upper Palaeolithic humans in Europe had recent Neanderthal ancestry
Modern humans appeared in Europe by at least 45,000 years ago1â5, but the extent of their interactions with Neanderthals, who disappeared by about 40,000 years ago6, and their relationship to the broader expansion of modern humans outside Africa are poorly understood. Here we present genome-wide data from three individuals dated to between 45,930 and 42,580 years ago from Bacho Kiro Cave, Bulgaria1,2. They are the earliest Late Pleistocene modern humans known to have been recovered in Europe so far, and were found in association with an Initial Upper Palaeolithic artefact assemblage. Unlike two previously studied individuals of similar ages from Romania7 and Siberia8 who did not contribute detectably to later populations, these individuals are more closely related to present-day and ancient populations in East Asia and the Americas than to later west Eurasian populations. This indicates that they belonged to a modern human migration into Europe that was not previously known from the genetic record, and provides evidence that there was at least some continuity between the earliest modern humans in Europe and later people in Eurasia. Moreover, we find that all three individuals had Neanderthal ancestors a few generations back in their family history, confirming that the first European modern humans mixed with Neanderthals and suggesting that such mixing could have been common
- âŠ