265 research outputs found

    Roles of the color antisymmetric ghost propagator in the infrared QCD

    Full text link
    The results of Coulomb gauge and Landau gauge lattice QCD simulation do not agree completely with continuum theory. There are indications that the ghost propagator in the infrared region is not purely color diagonal as in high energy region. After presenting lattice simulation of configurations produced with Kogut-Susskind fermion (MILC collaboration) and those with domain wall fermion (RBC/UKQCD collaboration), I investigate in triple gluon vertex and the ghost-gluon-ghost vertex how the square of the color antisymmetric ghost contributes. Then the effect of the vertex correction to the gluon propagator and the ghost propagator is investigated. Recent Dyson-Schwinger equation analysis suggests the ghost dressing function G(0)=G(0)= finite and no infrared enhancement or αG=0\alpha_G=0. But the ghost propagator renormalized by the loop containing a product of color antisymmetric ghost is expected to behave as r=G(q2)q2_r =-\frac{G(q^2)}{q^2} with G(q2)q2(1+αG)G(q^2)\propto q^{-2(1+\alpha_G)} with αG=0.5\alpha_G = 0.5, if the fixed point scenario is valid. I interpret the αG=0\alpha_G=0 solution should contain a vertex correction. The infrared exponent of our lattice Landau gauge gluon propagator of the RBC/UKQCD is κ=αG=0.5\kappa=\alpha_G=-0.5 and that of MILC is about -0.7. The implication for the Kugo-Ojima color confinement criterion, QCD effective coupling and the Slavnov identity are given.Comment: 13 pages 10 figures, references added and revised. version to be published in Few-Body System

    Correlation of the ghost and the quark in the lattice Landau gauge QCD

    Get PDF
    Effects of the quark field on the ghost propagator of the lattice Landau gauge are investigated by using the quenched gauge configuration of SU(2) first copy and the parallel tempering (PT) gauge fixed samples, quenched SU(3) 56456^4 configuration and unquenched SU(3) configurations produced by the MILC collaboration. We measure color symmetric and color antisymmetric ghost propagator and the Binder cumulant of l1l^1 norm and l2l^2 norm of color antisymmetric ghost propagator and investigate deviation from that of Gaussian distribution. The dynamical quarks make color antisymmetric ghost propagator closer to Gaussian distribution and Kugo-Ojima color confinement parameter cc closer to 1

    Numerical Study of the Ghost-Gluon Vertex in Landau gauge

    Full text link
    We present a numerical study of the ghost-gluon vertex and of the corresponding renormalization function \widetilde{Z}_1(p^2) in minimal Landau gauge for SU(2) lattice gauge theory. Data were obtained for three different lattice volumes (V = 4^4, 8^4, 16^4) and for three lattice couplings \beta = 2.2, 2.3, 2.4. Gribov-copy effects have been analyzed using the so-called smeared gauge fixing. We also consider two different sets of momenta (orbits) in order to check for possible effects due to the breaking of rotational symmetry. The vertex has been evaluated at the asymmetric point (0;p,-p) in momentum-subtraction scheme. We find that \widetilde{Z}_1(p^2) is approximately constant and equal to 1, at least for momenta p > ~ 1 GeV. This constitutes a nonperturbative verification of the so-called nonrenormalization of the Landau ghost-gluon vertex. Finally, we use our data to evaluate the running coupling constant \alpha_s(p^2).Comment: 19 pages, 6 figures, 9 tables, using axodraw.sty; minor modifications in the abstract, introduction and conclusion

    The asymmetry of the dimension 2 gluon condensate: the zero temperature case

    Get PDF
    We provide an algebraic study of the local composite operators A_\mu A_\nu-\delta_{\mu\nu}/d A^2 and A^2, with d=4 the spacetime dimension. We prove that these are separately renormalizable to all orders in the Landau gauge. This corresponds to a renormalizable decomposition of the operator A_\mu A_\nu into its trace and traceless part. We present explicit results for the relevant renormalization group functions to three loop order, accompanied with various tests of these results. We then develop a formalism to determine the zero temperature effective potential for the corresponding condensates, and recover the already known result for \neq 0, together with <A_\mu A_\nu-\delta_{\mu\nu}/d A^2>=0, a nontrivial check that the approach is consistent with Lorentz symmetry. The formalism is such that it is readily generalizable to the finite temperature case, which shall allow a future analytical study of the electric-magnetic symmetry of the condensate, which received strong evidence from recent lattice simulations by Chernodub and Ilgenfritz, who related their results to 3 regions in the Yang-Mills phase diagram.Comment: 25 page

    Gribov horizon in the presence of dynamical mass generation in Euclidean Yang-Mills theories in the Landau gauge

    Get PDF
    The infrared behavior of the gluon and ghost propagators is analyzed in Yang-Mills theories in the presence of dynamical mass generation in the Landau gauge. By restricting the domain of integration in the path-integral to the Gribov region Ω\Omega , the gauge propagator is found to be suppressed in the infrared, while the ghost propagator is enhanced.Comment: 10 pages, final version to appear in Phys. Lett.

    Infrared Features of the Landau Gauge QCD

    Full text link
    The infrared features of Landau gauge QCD are studied by the lattice simulation of β=6.0,164,244,324\beta=6.0, 16^4, 24^4, 32^4 and β=6.4,324,484\beta=6.4, 32^4, 48^4. We adopt two definitions of the gauge field; 1) UU-linear 2) logU\log U and measured the gluon propagator and ghost propagator. Infrared singularity of the gluon propagator is less than that of tree level result but the gluon propagator at 0 momentum remains finite. The infrared singularity of ghost propagator is stronger than the tree level. The QCD running coupling measured by using the gluon propagator and the ghost propagator has a maximum αs(p)1\alpha_s(p)\simeq 1 at around p=0.5GeVp=0.5GeV and decreases as pp approaches 0. The data are analyzed in use of formula of the principle of minimal sensitivity(PMS), the effective charge method and the contour-improved perturbation method, which suggest necessity of the resummation of perturbation series in the infrared region together with existence of the infrared fixed point. Kugo-Ojima parameter saturates at about -0.8 in contrast to the theoretically expected value -1.Comment: RevTex4, 9 pages, 10 eps figures, Typos corrected. To be published in Phys. Rev. D(2004

    The Gribov-Zwanziger action in the presence of the gauge invariant, nonlocal mass operator Trd4xFμν(D2)1FμνTr \int d^4x F_{\mu\nu} (D^2)^{-1} F_{\mu\nu} in the Landau gauge

    Full text link
    We prove that the nonlocal gauge invariant mass dimension two operator Fμν(D2)1FμνF_{\mu\nu} (D^2)^{-1} F_{\mu\nu} can be consistently added to the Gribov-Zwanziger action, which implements the restriction of the path integral's domain of integration to the first Gribov region when the Landau gauge is considered. We identify a local polynomial action and prove the renormalizability to all orders of perturbation theory by employing the algebraic renormalization formalism. Furthermore, we also pay attention to the breaking of the BRST invariance, and to the consequences that this has for the Slavnov-Taylor identity.Comment: 30 page
    corecore