We present a numerical study of the ghost-gluon vertex and of the
corresponding renormalization function \widetilde{Z}_1(p^2) in minimal Landau
gauge for SU(2) lattice gauge theory. Data were obtained for three different
lattice volumes (V = 4^4, 8^4, 16^4) and for three lattice couplings \beta =
2.2, 2.3, 2.4. Gribov-copy effects have been analyzed using the so-called
smeared gauge fixing. We also consider two different sets of momenta (orbits)
in order to check for possible effects due to the breaking of rotational
symmetry. The vertex has been evaluated at the asymmetric point (0;p,-p) in
momentum-subtraction scheme. We find that \widetilde{Z}_1(p^2) is approximately
constant and equal to 1, at least for momenta p > ~ 1 GeV. This constitutes a
nonperturbative verification of the so-called nonrenormalization of the Landau
ghost-gluon vertex. Finally, we use our data to evaluate the running coupling
constant \alpha_s(p^2).Comment: 19 pages, 6 figures, 9 tables, using axodraw.sty; minor modifications
in the abstract, introduction and conclusion