14,076 research outputs found

    Fluctuation and dissipation in de Sitter space

    Full text link
    In this paper we study some thermal properties of quantum field theories in de Sitter space by means of holographic techniques. We focus on the static patch of de Sitter and assume that the quantum fields are in the standard Bunch-Davies vacuum. More specifically, we follow the stochastic motion of a massive charged particle due to its interaction with Hawking radiation. The process is described in terms of the theory of Brownian motion in inhomogeneous media and its associated Langevin dynamics. At late times, we find that the particle undergoes a regime of slow diffusion and never reaches the horizon, in stark contrast to the usual random walk behavior at finite temperature. Nevertheless, the fluctuation-dissipation theorem is found to hold at all times.Comment: 1+45 pages, 5 figures. v4: matches published versio

    Rotation-Induced Breakdown of Torsional Quantum Control

    Get PDF
    Control of the torsional angles of nonrigid molecules is key for the development of emerging areas like molecular electronics and nanotechnology. Based on a rigorous calculation of the rotation-torsion-Stark energy levels of nonrigid biphenyl-like molecules, we show that, unlike previously believed, instantaneous rotation-torsion-Stark eigenstates of such molecules, interacting with a strong laser field, present a large degree of delocalization in the torsional coordinate even for the lowest energy states. This is due to a strong coupling between overall rotation and torsion leading to a breakdown of the torsional alignment. Thus, adiabatic control of changes on the planarity of this kind of molecule is essentially impossible unless the temperature is on the order of a few Kelvin

    Ground state magnetic structure of Mn3_3Ge

    Get PDF
    We have used spherical neutron polarimetry to investigate the magnetic structure of the Mn spins in the hexagonal semimetal Mn3_3Ge, which exhibits a large intrinsic anomalous Hall effect. Our analysis of the polarimetric data finds a strong preference for a spin structure with E1gE_{1g} symmetry relative to the D6hD_{6h} point group. We show that weak ferromagnetism is an inevitable consequence of the symmetry of the observed magnetic structure, and that sixth order anisotropy is needed to select a unique ground state

    Shaping an Itinerant Quantum Field by Dissipation

    Get PDF
    We show that inducing sidebands in the emission of a single emitter into a one dimensional waveguide, together with a dissipative re-pumping process, a photon field is cooled down to a squeezed vacuum. Our method does not require to be in the strong coupling regime, works with a continuum of propagating field modes and it may lead to sources of tunable multimode squeezed light in circuit QED systems.Comment: 4 pages, 3 figure

    Quantum memories based on engineered dissipation

    Full text link
    Storing quantum information for long times without disruptions is a major requirement for most quantum information technologies. A very appealing approach is to use self-correcting Hamiltonians, i.e. tailoring local interactions among the qubits such that when the system is weakly coupled to a cold bath the thermalization process takes a long time. Here we propose an alternative but more powerful approach in which the coupling to a bath is engineered, so that dissipation protects the encoded qubit against more general kinds of errors. We show that the method can be implemented locally in four dimensional lattice geometries by means of a toric code, and propose a simple 2D set-up for proof of principle experiments.Comment: 6 +8 pages, 4 figures, Includes minor corrections updated references and aknowledgement

    Finite difference and finite element methods for partial differential equations on fractals

    Get PDF
    In this paper, we present numerical procedures to compute solutions of partial differential equations posed on fractals. In particular, we consider the strong form of the equation using standard graph Laplacian matrices and also weak forms of the equation derived using standard length or area measure on a discrete approximation of the fractal set. We then introduce a numerical procedure to normalize the obtained diffusions, that is, a way to compute the renormalization constant needed in the definitions of the actual partial differential equation on the fractal set. A particular case that is studied in detail is the solution of the Dirichlet problem in the Sierpinski triangle. Other examples are also presented including a non-planar Hata tree.In this paper, we present numerical procedures to compute solutions of partial differential equations posed on fractals. In particular, we consider the strong form of the equation using standard graph Laplacian matrices and also weak forms of the equation derived using standard length or área measure on a discrete approximation of the fractal set. We then introduce a numerical procedure to normalize the obtained diffusions, that is, a way to compute the renormalization constant needed in the definitions of the actual partial differential equation on the fractal set. A particular case that is studied in detail is the solution of the Dirichlet problem in the Sierpinski triangle. Other examples are also presented including a non-planar Hata tree

    Unsupervised Segmentation of Action Segments in Egocentric Videos using Gaze

    Full text link
    Unsupervised segmentation of action segments in egocentric videos is a desirable feature in tasks such as activity recognition and content-based video retrieval. Reducing the search space into a finite set of action segments facilitates a faster and less noisy matching. However, there exist a substantial gap in machine understanding of natural temporal cuts during a continuous human activity. This work reports on a novel gaze-based approach for segmenting action segments in videos captured using an egocentric camera. Gaze is used to locate the region-of-interest inside a frame. By tracking two simple motion-based parameters inside successive regions-of-interest, we discover a finite set of temporal cuts. We present several results using combinations (of the two parameters) on a dataset, i.e., BRISGAZE-ACTIONS. The dataset contains egocentric videos depicting several daily-living activities. The quality of the temporal cuts is further improved by implementing two entropy measures.Comment: To appear in 2017 IEEE International Conference On Signal and Image Processing Application

    The Term Structure of Interest Rates in a DSGE Model with Recursive Preferences

    Get PDF
    We solve a dynamic stochastic general equilibrium (DSGE) model in which the representative household has Epstein and Zin recursive preferences. The parameters governing preferences and technology are estimated by means of maximum likelihood using macroeconomic data and asset prices, with a particular focus on the term structure of interest rates. We estimate a large risk aversion, an elasticity of intertemporal substitution higher than one, and substantial adjustment costs. Furthermore, we identify the tensions within the model by estimating it on subsets of these data. We conclude by pointing out potential extensions that might improve the model’s fit.DSGE models, Epstein-Zin preferences, likelihood estimation, yield curve

    Twisted flux tube emergence from the convection zone to the corona

    Full text link
    3D numerical simulations of a horizontal magnetic flux tube emergence with different twist are carried out in a computational domain spanning the upper layers of the convection zone to the lower corona. We use the Oslo Staggered Code to solve the full MHD equations with non-grey and non-LTE radiative transfer and thermal conduction along the magnetic field lines. The emergence of the magnetic flux tube input at the bottom boundary into a weakly magnetized atmosphere is presented. The photospheric and chromospheric response is described with magnetograms, synthetic images and velocity field distributions. The emergence of a magnetic flux tube into such an atmosphere results in varied atmospheric responses. In the photosphere the granular size increases when the flux tube approaches from below. In the convective overshoot region some 200km above the photosphere adiabatic expansion produces cooling, darker regions with the structure of granulation cells. We also find collapsed granulation in the boundaries of the rising flux tube. Once the flux tube has crossed the photosphere, bright points related with concentrated magnetic field, vorticity, high vertical velocities and heating by compressed material are found at heights up to 500km above the photosphere. At greater heights in the magnetized chromosphere, the rising flux tube produces a cool, magnetized bubble that tends to expel the usual chromospheric oscillations. In addition the rising flux tube dramatically increases the chromospheric scale height, pushing the transition region and corona aside such that the chromosphere extends up to 6Mm above the photosphere. The emergence of magnetic flux tubes through the photosphere to the lower corona is a relatively slow process, taking of order 1 hour.Comment: 53 pages,79 figures, Submitted to Ap
    corecore