Storing quantum information for long times without disruptions is a major
requirement for most quantum information technologies. A very appealing
approach is to use self-correcting Hamiltonians, i.e. tailoring local
interactions among the qubits such that when the system is weakly coupled to a
cold bath the thermalization process takes a long time. Here we propose an
alternative but more powerful approach in which the coupling to a bath is
engineered, so that dissipation protects the encoded qubit against more general
kinds of errors. We show that the method can be implemented locally in four
dimensional lattice geometries by means of a toric code, and propose a simple
2D set-up for proof of principle experiments.Comment: 6 +8 pages, 4 figures, Includes minor corrections updated references
and aknowledgement