
 
 

 
 

 
 

by 
 

http://ssrn.com/abstract=1585848 

Jules H. van Binsbergen, Jesús Fernández-Villaverde, 
 Ralph S.J. Koijen, Juan F. Rubio-Ramírez 

 
 

 
 

 
“The Term Structure of Interest Rates in 

 a DSGE Model with Recursive Preferences ” 

PIER Working Paper 10-011 

Penn Institute for Economic Research
Department of Economics 
University of Pennsylvania 

3718 Locust Walk 
Philadelphia, PA 19104-6297 

pier@econ.upenn.edu 
http://economics.sas.upenn.edu/pier 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6330647?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ssrn.com/abstract=1585848


The Term Structure of Interest Rates

in a DSGE Model with Recursive Preferences∗

Jules H. van Binsbergen

Stanford University

Graduate School of Business

Jesús Fernández-Villaverde

University of Pennsylvania

FEDEA, NBER and CEPR

Ralph S.J. Koijen

University of Chicago

Booth School of Business

Juan F. Rubio-Ramírez

Duke University

Federal Reserve Bank of Atlanta

FEDEA

March 2010

∗We thank George Constantinides, Xavier Gabaix, Lars Hansen, Hanno Lustig, Monika Piazzesi, Stephanie
Schmitt-Grohé, Martin Schneider, Martín Uribe, Stijn Van Nieuwerburgh, and seminar participants at the
University of Chicago, Yale, Stanford, the SED, the University of Pennsylvania, and the SITE conference
for comments. Beyond the usual disclaimer, we must note that any views expressed herein are those of the
authors and not necessarily those of the Federal Reserve Bank of Atlanta or the Federal Reserve System.
Finally, we also thank the NSF for financial support.

1



Abstract

We solve a dynamic stochastic general equilibrium (DSGE) model in which the

representative household has Epstein and Zin recursive preferences. The parameters

governing preferences and technology are estimated by means of maximum likelihood

using macroeconomic data and asset prices, with a particular focus on the term struc-

ture of interest rates. We estimate a large risk aversion, an elasticity of intertemporal

substitution higher than one, and substantial adjustment costs. Furthermore, we iden-

tify the tensions within the model by estimating it on subsets of these data. We conclude

by pointing out potential extensions that might improve the model’s fit.
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1. Introduction

In this paper, we study whether an estimated dynamic stochastic general equilibrium (DSGE)

model in which the representative household has Epstein and Zin recursive preferences can

match both macroeconomic and yield curve data. After solving the model using perturbation

methods, we build the likelihood function with the particle filter and estimate the structural

parameters, those describing preferences and technology, via maximum likelihood and macro-

economic and yield curve data. We also estimate the model on subsets of the data to illustrate

how the structural parameters are identified.

The motivation for our exercise is that economists are paying increasing attention to

recursive utility functions (Kreps and Porteus, 1978, Epstein and Zin, 1989 and 1991, and

Weil, 1990).1 The key advantage of these preferences is that they allow separation between the

intertemporal elasticity of substitution (IES) and risk aversion. In the asset pricing literature,

researchers have argued that Epstein and Zin preferences account for many patterns in the

data, possibly in combination with other features such as long-run risk. Bansal and Yaron

(2004) is a prime representative of this line of work. From a policy perspective, recursive

preferences generate radically bigger welfare costs of the business cycle than those coming

from standard expected utility (Tallarini, 2000). Hence, they may change the trade-offs that

policy makers face, as shown by Levin, López-Salido, and Yun (2007). Finally, Epstein and

Zin preferences can be reinterpreted, under certain conditions, as a case of robust control

preferences (Hansen, Sargent, and Tallarini, 1999). The natural question is, thus, whether

we can successfully take an empirically plausible version of these models to the data.

Our paper makes three main contributions. The first contribution is to study the role of

Epstein and Zin preferences in a full-fledged production economy with endogenous capital

and labor supply and their interaction with the yield curve. Having a production economy

is crucial for many questions in which economists are interested. For example, one of the

most attractive promises of integrating macroeconomics and finance is to have, in the middle

run, richer models for policy advice. Fiscal or monetary policy will have implications for the

yield curve because they trigger endogenous responses on the accumulation of capital. These

effects on the yield curve may be key for the propagation mechanism of policy. Similarly, we

want to learn how to interpret movements in the yield curve as a way to identify the effects of

1Among many others, Backus, Routledge, and Zin (2004 and 2007), Bansal, Dittman, and Kiku (2007),
Bansal, Gallant, and Tauchen (2008), Bansal, Kiku, and Yaron (2007), Bansal and Yaron (2004), Campanale,
Castro, and Clementi (2010), Campbell (1993 and 1996), Campbell and Viceira (2001), Chen, Favilukis
and Ludvigson (2007), Croce (2006), Dolmas (1996), Gomes and Michealides (2005), Hansen, Heaton, and
Li (2008), Kaltenbrunner and Lochstoer (2008), Lettau and Uhlig (2002), Piazzesi and Schneider (2006),
Rudebusch and Swanson (2008), Tallarini (2000), and Uhlig (2007). See also Hansen et al. (2008) for a
survey of the literature.
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policy interventions on variables, such as investment, that are central to the business cycle.

This is particularly easy to see if we concentrate on the consumption process that drives

the stochastic discount factor under recursive preferences. Except in a few papers,2 re-

searchers interested in asset pricing have studied economies in which consumption follows an

exogenous process. This is a potentially important shortcoming. First, production economies

place tight restrictions on the comovements of consumption with other endogenous variables

that exogenous consumption models are not forced to satisfy. Second, in DSGE models, the

consumption process itself is not independent of the parameters fixing the IES and risk aver-

sion. In comparison, by fixing the consumption process in endowment economies, a change

in preferences implicitly translates to a change in the labor income process. This compli-

cates the interpretation of preference parameters. Finally, considering production economies

with labor supply is quantitatively relevant. Uhlig (2007) has shown how, with Epstein and

Zin preferences, leisure significantly affects asset pricing through the risk-adjusted expecta-

tion operator. Thus, even when leisure enters separately in the period utility function, the

recursive formulation will make the stochastic discount factor dependent on leisure.

Unfortunately, working with Epstein and Zin preferences is harder than working with

expected utility. Instead of the simple optimality conditions of expected utility, recursive

preferences imply necessary conditions that include the value function itself.3 Therefore,

standard linearization techniques cannot be employed. Hence, the literature has resorted

to either simplifying the problem by working only with an exogenous flow for consumption,

or using costly computational solution algorithms such as value function iteration (Croce,

2006) or projection methods (Campanale, Castro, and Clementi, 2010). The former solution

precludes all those exercises in which consumption reacts endogenously to the dynamics of

the model. The latter solution makes estimation, a basic goal of our paper, exceedingly

challenging because of the time spent in the solution of the model for each set of parameter

values.

We get around this obstacle by solving the equilibrium dynamics of our economy with

perturbation methods. Thus, we illustrate how this approach is a fast and reliable way

to compute models with Epstein and Zin preferences. Our choice is motivated by several

considerations. First, we will show how perturbation offers insights into the structure of the

2Among recent examples, Backus, Routledge, and Zin (2007), Campanale, Castro, and Clementi (2010),
Croce (2006), or Rudebusch and Swanson (2008).

3Epstein and Zin (1989) avoid this problem by showing that if we have access to the total wealth port-
folio, we can derive a first-order condition in terms of observables that can be estimated using a method of
moments estimator. However, in general we do not observe the total wealth portfolio because of the diffi -
culties in measuring human capital, forcing the researcher to proxy the return on wealth. See, for instance,
Campbell (1996) and Lustig, Van Nieuwerburgh, and Verdehaln (2007).
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solution of the model that enhance our understanding of the role of recursive preferences. In

particular, we will learn that the first-order approximation to the policy functions of our model

with Epstein and Zin preferences is equivalent to that of the model with standard utility and

the same IES. The risk aversion parameter does not show up in this first-order approximation.

Instead, risk aversion appears in the constant of the second-order approximation that captures

precautionary behavior. This constant moves the ergodic distribution of states, affecting,

through this channel, allocations, prices, and welfare up to a first order. More concretely,

by changing the mean of capital in the ergodic distribution, the risk aversion parameter

influences the average level and the slope of the yield curve. Risk aversion also enters into

the coeffi cients of the third-order approximation that change the slope of the response of the

solution to variations in the states of the model.

Furthermore, in practice, perturbation methods are the only computationally feasible pro-

cedure to solve the policy-oriented, medium-scale DSGE models that have dozens of state

variables (Christiano, Eichenbaum, and Evans, 2005, and Smets and Wouters, 2007). Conse-

quently, our solution approach has an important applicability. Moreover, since implementing

a third-order perturbation is feasible with off-the-shelf software such as Dynare, which re-

quires minimum programming knowledge by the user, our findings may induce researchers to

explore recursive preferences in further detail.

In contemporaneous work, Rudebusch and Swanson (2008) also use perturbation methods

to solve a DSGE model with recursive preferences. Their model differs from ours in that

they do not include endogenous capital, which in a production model imposes important

constraints on the properties of returns. In addition, they rely on an approximation to the

returns on bonds through a consol. Andreasen and Zabczyk (2010) show, however, that this

may introduce computational biases. In terms of methodology, we estimate the model via

maximum likelihood, whereas Rudebusch and Swanson calibrate the parameters.

The second contribution of our paper is to show how to estimate the model by maximum

likelihood. In studying the asset pricing implications of full-fledged equilibrium models, it

is common practice to calibrate the parameters.4 While this approach illuminates the main

economic mechanism at work, it might overlook some restrictions implied by the model. This

is relevant, since various asset pricing models can explain the same set of moments, but the

economic mechanism generating the results, be it habits, long-run risks, or rare disasters,

is quite different and implies diverse equilibrium dynamics. Our likelihood-based inference

imposes all cross-equation restrictions implied by the equilibrium model and is, therefore,

4Famous examples are Campbell and Cochrane (1999) and Bansal and Yaron (2004). A notable exception
is Chen, Favilukis, and Ludvigson (2007), who estimate an endowment economy in which the representative
agent has habit-type preferences.
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much more powerful in testing asset pricing models.

The third contribution of our paper is to the fast-growing literature on term structure

models. These models are successful in fitting the term structure of interest rates, but

this is typically accomplished using latent variables.5 Even though some papers include

macroeconomic or monetary policy variables, such variables still enter in a reduced-form

way. Our approach imposes much additional structure on such models, but the restrictions

directly follow from the assumptions we make about preferences and technology. Such models

obviously underperform the statistical models,6 but they improve our understanding as to

which preferences and technology processes induce a realistic term structure of interest rates.

Furthermore, as we have argued before, macroeconomists require a structural model to design

and evaluate economic policies that might affect the term structure of interest rates in an

environment with recursive preferences.

Summarizing, this paper is the first one to show how to use perturbation techniques

in combination with the particle filter to overcome the diffi culties in estimating production

models with recursive preferences. To do so, we rely on a prototype real business cycle

economy with Epstein and Zin preferences and long-run growth through a unit root in the

law of motion for technological progress.

As our first step, we perturb the value function formulation of the household problem

to obtain a third-order approximation to the solution of the model given some parameter

values in a trivial amount of time.7 Given our econometric goals, an additional advantage

of our solution technique is that we do not limit ourselves to the case with unitary IES, as

Tallarini (2000) and others are forced to do.8 There are three reasons why this flexibility

might be important. First, because restricting the IES to one seems an unreasonably tight

restriction that is hard to reconcile with previous findings. Second, a value of the IES equal

to one implies that the consumption-wealth ratio is constant over time. This implication of

the model is hard to verify because total wealth is not directly observable, since it includes

human wealth. However, different attempts at measurement, such as Lettau and Ludvigson

(2001) or Lustig, van Nieuwerburgh, and Verdelhan (2007), reject the hypothesis that the

ratio of consumption to wealth is constant. Third, the debate between Campbell (1996) and

5See, among others, Dai and Singleton (2000 and 2002), Duffee (2002), Cochrane and Piazzesi (2005 and
2008), and Ang, Bekaert, and Wei (2008).

6Campbell and Cochrane (2000) make a similar point in relation to consumption-based and reduced-form
asset pricing models.

7In companion work, Caldara et al. (2010) document that this solution is highly accurate and compare it
with alternative computational approaches.

8There is also another literature, based on Campbell (1993), that approximates the solution of the model
around a value of the IES equal to one. Since our perturbation is with respect to the volatility of the
productivity shock, we can deal with arbitrary values of the IES.
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Bansal and Yaron (2004) about the usefulness of the Epstein and Zin approach pertains to the

right value of the IES. By directly estimating this parameter using all economic restrictions

implied by production economies, we contribute to this conversation.

The second step in our procedure is to use the particle filter to evaluate the likelihood

function of the model (Fernández-Villaverde and Rubio-Ramírez, 2007).9 Evaluating the

likelihood function of a DSGE model is equivalent to keeping track of the conditional distrib-

ution of unobserved states of the model with respect to the data. Our perturbation solution

is inherently non-linear. These non-linearities make the conditional distribution of states

intractable and prevent the application of more conventional methods, such as the Kalman

filter. The particle filter is a sequential Monte Carlo method that replaces the conditional

distribution of states by an empirical distribution of states drawn by simulation.

We estimate the model with US data on consumption growth, output growth, five bond

yields, and inflation over the period 1953.Q1 to 2008.Q4. The point estimates imply a high

coeffi cient of risk aversion, an IES well above one, and substantial adjustment costs of capi-

tal. However, we find that the model barely generates a bond risk premium and substantially

underestimates the volatility of bond yields. The model is able, however, to reproduce the

autocorrelation patterns in consumption growth, the 1-year bond yield, and inflation. To

better understand the model’s shortcomings and how the parameters are identified, we re-

estimate the model based on subsets of our data. First, we omit inflation from our sample.

The estimates we then find imply a bond risk premium that is comparable to the one we

measure in the data, and the model reproduces the empirical bond yield volatility. How-

ever, this “success” is explained by the fact that, in this case, the volatility of inflation is

too high. Finally, we estimate our model based only on bond yields. The estimates and

implications are remarkably similar to the previous case in which we omit the observations

on inflation. This leads us to conclude that the parameters are mostly identified from yield

and inflation data. This also illustrates the large amount of information regarding structural

parameters in finance data and the importance of incorporating asset pricing observations

into the estimation of DSGE models.

The rest of the paper is structured as follows. In section 2, we present our model. In

section 3, we explain how we solve the model with perturbation and what we learn about the

structure of the solution. Section 4 describes the likelihood-based method based on the use

of the particle filter. Section 5 reports the data and our empirical findings. Section 6 outlines

several extensions and section 7 concludes. Three appendices offer further details.

9A recent application of the particle filter in finance includes Binsbergen and Koijen (2010), who use the
particle filter to estimate the time series of expected returns and expected growth rates using a present-value
model.
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2. A Production Economy with Recursive Preferences

In this section, we present a simple production economy that we will later take to the data and

use it to price nominal bonds at different maturities. The only deviation from the standard

stochastic neoclassical growth model is that we consider Epstein and Zin preferences, instead

of standard state-separable constant relative risk aversion (CRRA). In addition, we add a

process for inflation that captures well the dynamics of price increases in the data and that

will allow us to value nominal bonds.

2.1. Preferences

There is a representative household whose utility function over streams of consumption ct
and leisure 1− lt is:

Ut =

[(
cυt (1− lt)1−υ

) 1−γ
θ + β

(
EtU1−γt+1

) 1
θ

] θ
1−γ

,

where γ ≥ 0 is the parameter that controls risk aversion, ψ ≥ 0 is the IES, and

θ ≡ 1− γ
1− 1

ψ

.

The term
(
EtU1−γt+1

) 1
1−γ is often called the risk-adjusted expectation operator. When γ = 1

ψ
,

we have that θ = 1 and the recursive preferences collapse to the standard CRRA case. The

Epstein and Zin framework implies that the household has preferences for the timing of the

resolution of uncertainty. In our notation, if γ > 1
ψ
, the household prefers an early resolution

of uncertainty, and if γ < 1
ψ
, a later resolution. The discount factor is β and one period

corresponds to one quarter.

2.2. Technology

There is a representative firm with access to a technology described by a neoclassical pro-

duction function yt = kζt (ztlt)
1−ζ , where output yt is produced with capital, kt, labor, lt, and

technology zt. This technology evolves as a random walk in logs with drift λ:

log zt+1 = λ+ log zt + χσεεzt+1, (1)

where εzt ∼ N (0, 1). The parameter χ scales the standard deviation of the productivity shock,

σε. This parameter, also called the perturbation parameter, will facilitate the presentation of
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our solution method later on. We pick this specification over trend stationarity motivated by

Tallarini (2000), who shows that a unit root representation such as (1) facilitates matching

the observed market price of risk in a model close to ours. Similarly, Álvarez and Jermann

(2005) calculate that most of the unconditional variation in the pricing kernel comes from

the permanent component. Part of the reason, as emphasized by Rouwenhorst (1995), is that

period-by-period unit root shifts of the long-run growth path of the economy increase the

variance of future paths of the variables and, hence, the utility cost of risk.

2.3. Budget and Resource Constraints

The budget constraint of the household is:

ct + it +
bt+1
pt

1

Rt

= rtkt + wtlt +
bt
pt
, (2)

where pt is the price level of the final good at time t, it is investment in period t, kt is capital

in period t, bt is the number of one-period uncontingent bonds held in period t that pay one

nominal unit in period t + 1, R−1t is their unit price at time t, wt is the real wage at time t,

and rt is the real rental price of capital at time t, both measured in units of the final good. In

the interest of clarity, we include in the budget constraint only the one-period uncontingent

bond we just described. Using the pricing kernel, in section 2.6, we will write the set of

equations that determine the prices of nominal bonds at any maturity. In any case, their

price in equilibrium will be such that the representative agent will hold a zero amount of

them. The aggregate resource constraint is

yt = ct + it. (3)

2.4. Dynamics of the Capital Stock

Capital depreciates at rate δ. Thus, the dynamics of the capital stock is given by:

kt+1 = (1− δ) kt +G

(
it
kt

)
kt, (4)

in which:

G

(
it
kt

)
=

a1
1− τ

(
it
kt

)1− 1
τ

+ a2,

denotes the adjustment cost of capital as in Jermann (1998). We normalize:

a1 =
eλ − 1 + δ

1− τ ,
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and

a2 =
(
eλ − 1 + δ

) 1
τ ,

such that adjustment costs do not affect the steady state of the model.

2.5. Inflation Dynamics

In our data, we will include nominal bond yields at different maturities as part of our ob-

servables. Hence, we need to take a stand on how inflation, log πt, evolves over time. Since

we want to keep the model as stylized as possible, we take inflation as an exogenous process

that does not affect allocations. Therefore, money is neutral in our economy.10 Also, the

representative household has rational expectations about the process.

Following Campbell and Viceira (2001), among others, inflation is assumed to follow the

process:

log πt+1 = log π̄ + ρ (log πt − log π̄) + χ (σωωt+1 + κ0σεεzt+1) + ι (σωωt + κ1σεεzt) ,

where ωt ∼ N (0, 1), ωt ⊥ εzt, and log πt ≡ log pt − log pt−1. The parameters κ0 and κ1 cap-

ture the correlation of unexpected and expected inflation with innovations to the technology

process, εzt+1 and εzt respectively. As before, χ is the perturbation parameter.

This specification allows us to accomplish two objectives. First, it lets us consider a

correlation between innovations to inflation expectations and innovations to the stochastic

discount factor. This implies that bond prices do not move one to one with expected inflation

and that we have an inflation premium. Second, the MA components capture the negative

first-order autocorrelation and the small higher order autocorrelations of inflation growth

reported by Stock and Watson (2007). These authors prefer an IMA(1,1) process for inflation

instead of our ARMA specification. Unfortunately, we cannot handle a unit root process for

inflation because the perturbation method to be used to solve the model requires that inflation

have a steady-state value. To minimize the effects of our stationarity assumption, we will

calibrate ρ to be 0.955 (the highest possible value for ρ such that we do not suffer from

numerical instabilities) and π̄ to 1.009 to match the observed average inflation. Our choice

of ρ is close to the value estimated by Stock and Watson (2007) when an ARMA(1,1) model

related to the one described here is estimated over a sample period similar to ours.

10This is not as restrictive an assumption as it might seem. Nominal rigidities, while important to capture
business cycle dynamics, are not very useful for matching asset pricing properties (see, for instance, De Paoli,
Scott, and Weeken, 2007, or Doh, 2009). This is particularly true once we account for, as we do, part of the
relation between price changes and technology shocks through our process for inflation.

10



2.6. Pricing Nominal Bonds

Given our process for inflation, we now move to price nominal bonds. In Appendix 8.1, we

show that the stochastic discount factor (SDF) for our economy is given by:

Mt+1 = β

(
cυt+1 (1− lt+1)1−υ

cυt (1− lt)1−υ

) 1−γ
θ

ct
ct+1

(
V 1−γ
t+1

EtV 1−γ
t+1

)1− 1
θ

.

where the value function Vt is defined as:

Vt = max
ct,lt,it

Ut,

subject to (3) and (4). We switch notation to Vt because it is convenient to distinguish

between the utility function of the household, Ut, and the value function that solves the

household’s problem Vt. Note that since the welfare theorems hold in our model, this value

function is also equal to the solution of the social planner’s problem, a result we use in the

appendices in a couple of steps. Nothing of substance depends on working with the social

planner’s problem except that the notation is easier to handle.

Hence, the Euler equation for the one-period nominal bonds is:

Et
(
Mt+1

1

πt+1

)
=

1

Rt

,

which can be written as:

Et

β(cυt+1 (1− lt+1)1−υ

cυt (1− lt)1−υ

) 1−γ
θ

ct
ct+1

(
V 1−γ
t+1

EtV 1−γ
t+1

)1− 1
θ

1

πt+1

 =
1

Rt

.

But what is more important for us, we can also compute bond prices recursively using

the following formula:

Et
(
Mt+1

1

πt+1

1

Rt+1,t+m

)
=

1

Rt,t+m

, (5)

with R−1t,t+m being the time-t price of anm-periods nominal bond. Note that we write Rt,t+1 =

Rt and Rt+1,t+1 = 1.

Disappointingly, we do not have any analytic expression for the equilibrium dynamics of

the model. In the next two sections, we will explain, first, how to use perturbation methods to

solve for these dynamics. Second, we will show how to exploit the output of the perturbation

to write a state-space representation of the model and how to exploit this representation to

evaluate the associated likelihood function.
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3. Solving the Model Using Perturbation

As we will explain in detail momentarily, we solve our economy by perturbing the value

function of the household plus the equilibrium conditions of the model defined by optimality

and feasibility. The advantage of perturbation over other methods such as value function

iteration or projection is that it produces an answer in a suffi ciently fast manner as to make

likelihood estimation feasible.11

We are not the first to explore the perturbation of value functions. Judd (1998) proposes

the idea but does not elaborate much on the topic. More recently, Schmitt-Grohé and Uribe

(2005) use a second-order approximation to the value function to rank different fiscal and

monetary policies in terms of welfare.

Our solution approach is also linked with that of Benigno and Woodford (2006) and

Hansen and Sargent (1995). Benigno and Woodford (2006) present a new linear-quadratic

approximation to solve optimal policy problems that avoids some problems of the traditional

linear-quadratic approximation when the constraints of the problem are non-linear.12 Thanks

to this alternative approximation, the authors find the correct local welfare ranking of different

policies. Our method, as theirs, can deal with non-linear constraints and obtain the correct

local approximation. One advantage of our method is that it is easily generalizable to higher-

order approximations without complication. Hansen and Sargent (1995) modify the linear-

quadratic regulator problem to include an adjustment for risk. In that way, they can handle

some versions of recursive utilities like the ones that motivate our investigation. Hansen and

Sargent’s method, however, imposes a tight functional form for future utility. Moreover, as

implemented in Tallarini (2000), it requires solving a fixed-point problem to recenter the

approximation to control for precautionary behavior. This step is time consuming and it

is not obvious that the required fixed-point exists or that the recentering converges. Our

method does not suffer from those limitations.

In this paper, we find a third-order approximation to the value function and decision rules

that yields outstanding accuracy as measured by Euler equation errors. We stop at order

three because third-order terms allow for a time-varying risk premium, an important feature

of the data that we want to capture, while keeping computational costs at a reasonable

level.13 Since we need to solve the model hundreds of times for different parameter values in

our estimation, speed is of the utmost importance. Obtaining higher-order approximations

is conceptually straightforward but computationally cumbersome.

11Also, as documented by Caldara et al. (2010) while exploring how to compute a model similar to ours,
the accuracy of a high-order perturbation is excellent even far away from the steady state of the model.
12See also Levine, Pearlman, and Pierse (2007) for a similar treatment of the problem.
13See also Binsbergen (2009)
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In our exposition, we use a concise notation to illustrate the required steps. Otherwise,

the algebra becomes too involved to be developed explicitly in the paper in all its detail. In

our application, the symbolic algebra is undertaken by a computer employing Mathematica,

which automatically generates Fortran 95 code that we can evaluate numerically.

3.1. Basic Structure

Since our model is non-stationary, we need to make it stationary by rescaling the variables

by zt−1. Hence, for any variable xt, we denote its normalized value by x̃t = xt/zt−1. Also,

remember that the stochastic processes are written in terms of a perturbation parameter χ.

When χ = 1, we are dealing with the stochastic version of the model and when χ = 0 we are

dealing with the deterministic case with steady state k̃ss and log z̃ss = λ.

Thus, we can write the value function, V
(
k̃t, log z̃t;χ

)
, and the decision rules for con-

sumption, c
(
k̃t, log z̃t;χ

)
, investment, i

(
k̃t, log z̃t;χ

)
, capital, k

(
k̃t, log z̃t;χ

)
, and labor,

l
(
k̃t, log z̃t;χ

)
, as a function of the two rescaled states, k̃t and log z̃t and the perturbation

parameter, χ. Since money is neutral in this model, the above-described value function and

decision rules do not depend on inflation. This is extremely helpful because it allows us to

first solve for them without considering inflation and, only then, using the previous findings,

to solve for nominal bond prices that do depend on inflation.

Now, we find the approximations to the value function and the decision rules for con-

sumption, labor, investment, and capital. Later, we will find the approximations to the

bond yields. Define st =
(
k̃t − k̃ss, log z̃t − log z̃ss; 1

)
as the vector of states in differences

with respect to the steady state, where sit is the i−component of this vector at time t for
i = {1, 2, 3}. Under differentiability conditions, the third-order Taylor approximation of the
value function, evaluated at χ = 1, around the steady state is

V
(
k̃t, log z̃t; 1

)
' Vss + Vi,sss

i
t +

1

2
Vij,sss

i
ts
j
t +

1

6
Vijl,sss

i
ts
j
ts
l
t, (6)

where each term V...,ss is a scalar equal to a derivative of the value function evaluated at the

steady state:

Vss ≡ V
(
k̃ss, log z̃ss; 0

)
,

Vi,ss ≡ Vi

(
k̃ss, log z̃ss; 0

)
for i = {1, 2, 3} ,

Vij,ss ≡ Vij

(
k̃ss, log z̃ss; 0

)
for i, j = {1, 2, 3} ,
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and

Vijl,ss ≡ Vijl

(
k̃ss, log z̃ss; 0

)
for i, j, l = {1, 2, 3} ,

where we have followed the tensor notation:

Vi,sss
i
t =

3∑
i=1

Vi,sssi,t,

Vij,sss
i
ts
j
t =

3∑
i=1

3∑
i=1

Vij,sssi,tsj,t,

and

Vijl,sss
i
ts
j
ts
l
t =

3∑
i=1

3∑
j=1

3∑
l=1

Vijl,sssi,tsj,tsl,t,

that eliminates the symbol
∑3

i=1 when no confusion arises.

Expression (6) has interesting properties. For example, when we evaluate it at
(
k̃ss, log z̃ss; 1

)
(the values of capital and productivity growth of the steady state and positive variance of

shocks), all terms will drop, except Vss, V3,ss, V33,ss, and V333,ss. But it turns out that all

the terms in odd powers of χ (in this case, V3,ss and V333,ss) are identically equal to zero.

Therefore, a third-order approximation of the value function evaluated in
(
k̃ss, log z̃ss; 1

)
is:

V
(
k̃ss, log z̃ss; 1

)
' Vss +

1

2
V33,ss,

where 1
2
V33,ss is a measure of the welfare cost of the business cycle, that is, of how much utility

changes when the variance of the productivity shocks is σ2 instead of zero.14 This quantity

14This welfare cost can easily be transformed into consumption equivalent units by computing the decrease
in consumption ϕ that makes the household indifferent between consuming (1− ϕ) css units per period with
certainty or ct units with risk. The steady-state value function is:

Vss =

(
1

1− βz̃
υ(1−γ)

θ
ss

) θ
1−γ

c̃υss (1− lss)1−υ ,

which implies:

c̃υss (1− lss)1−υ +
1

2

(
1− βz̃

υ(1−γ)
θ

ss

) θ
1−γ

V33,ss = (c̃ss (1− ϕ))
υ

(1− lss)1−υ .

Then:

ϕ = 1−

1 +
1

2

(
1− βz̃

υ(1−γ)
θ

t

) θ
1−γ

c̃υss (1− lss)1−υ
V33,ss


1
υ

.

14



is not necessarily negative, both because of the Jensen’s inequality (our productivity process

is in logs) and because concave utility functions may have convex indirect utility functions

(see Cho and Cooley, 2000, for an example in a real business cycle model). The term V33,ss

is also a key difference of perturbation from the standard linear-quadratic approximation,

where constants are dropped because they are irrelevant for the optimization. This is yet

another advantage of perturbation: V33,ss measures the effects of risk in the value function

and we want to keep it for welfare evaluation.

Following the same tensor notation as before, the decision rule for any control variable

var (consumption, labor, investment, and capital) can be approximated in a similar way as

var
(
k̃t, log z̃t; 1

)
' varss + vari,sss

i
t +

1

2
varij,sss

i
ts
j
t +

1

6
varijl,sss

i
ts
j
ts
l
t,

in which we define

varss ≡ var
(
k̃ss, log z̃ss; 0

)
,

vari,ss ≡ vari

(
k̃ss, log z̃ss; 0

)
for i = {1, 2, 3} ,

varij,ss ≡ varij

(
k̃ss, log z̃ss; 0

)
for i, j = {1, 2, 3} ,

and

varijl,ss ≡ varijl

(
k̃ss, log z̃ss; 0

)
for i, j, l = {1, 2, 3} .

The problem is that the derivatives V...,ss and var...,ss are not known. A perturbation

method finds them by taking derivatives of a set of equations describing the equilibrium of

the model and applying an implicit function theorem to solve for these unknown derivatives.

But once we have reached this point, there are two paths we can follow to obtain a set of

equations to perturb. The first path, the one in this paper, is to write down the equilibrium

conditions of the model plus the definition of the value function. Then, we take successive

derivatives with respect to states in this augmented set of equilibrium conditions and solve

for the unknown coeffi cients, which happen to be the derivatives of the value function and

decision rules that we need to get our higher-order approximations. This approach, which

we call equilibrium conditions perturbation (ECP), allows us to get, after n iterations, the

n-th-order approximation to the value function and to the decision rules.

A second path would be to take derivatives of the value function with respect to states

and controls and use those derivatives to find the unknown coeffi cients. This approach, which

we call value function perturbation (VFP), delivers after (n+ 1) steps, the (n+ 1)-th-order

15



approximation to the value function and the n-th-order approximation to the decision rules.

This alternative may be more convenient when it is diffi cult to eliminate levels or derivatives

of the value function from the equilibrium conditions or when the value function is smoother

than other equilibrium conditions.

3.1.1. Augmented Equilibrium Conditions

We derive now the set of augmented equilibrium conditions to implement the ECP approach.

The household’s problem is given by:

Vt = max
ct,lt,kt+1,it

[(
cυt (1− lt)1−υ

) 1−γ
θ + β

(
EtV 1−γ

t+1

) 1
θ

] θ
1−γ

,

subject to the budget and resource constraint in (2) and (3), and the dynamics of the capital

stock in (4).15

We find the first-order conditions of the household with respect to consumption, labor,

capital, and investment:

∂Vt
∂ct

= ξt,

∂Vt
∂lt

= −ξtwt,

qt = Et

ξt+1rt+1 + qt+1

1− δ +
∂G
(
it+1
kt+1

)
kt+1

∂kt+1

 ,
and

ξt = qt
∂G
(
it
kt

)
kt

∂it
,

where ξt is the Lagrangian multiplier associated with the resource constraint and qt is the

Lagrangian multiplier associated with the law of motion of capital. Using the last two first-

order conditions and the fact that Mt+1 = ξt+1/ξt, the Euler equation for capital can be

written as:

(
it
kt

) 1
τ

= Et

 β
(
cυt+1(1−lt+1)

1−υ

cυt (1−lt)
1−υ

) 1−γ
θ ct

ct+1

(
V 1−γt+1

EtV 1−γt+1

)1− 1
θ

×(
a2rt+1 +

(
it+1
kt+1

) 1
τ

(
1− δ + a1 + a2

τ−1

(
it+1
kt+1

)1− 1
τ

))
 .

15We could reduce the number of controls by substituting out of the budget constraints. We choose not to
do so, since we will employ these first-order conditions in the solution method.
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If τ →∞, that is, if we do not have adjustment costs, this equation simplifies to:

1 = Et
[
ξt+1
ξt

(rt+1 + 1− δ)
]
,

which is the standard equation without adjustment costs. Also, Tobin’s Q is defined as:

qt
ξt

=
1

a2

(
it
kt

) 1
τ

=
1

(eλ − 1 + δ)
1
τ

(
it
kt

) 1
τ

,

which also equals 1 if τ →∞.
Using the first-order conditions with respect to consumption and leisure, we can relate

consumption, leisure, and the wage rate:

1− υ
υ

ct
1− lt

= (1− ζ) kζt z
1−ζ
t l−ζt .

Hence, the augmented set of equilibrium conditions to be used to solve for Vt, it, kt+1, ct,

and lt is:

Vt =

[(
cυt (1− lt)1−υ

) 1−γ
θ + β

(
EtV 1−γ

t+1

) 1
θ

] θ
1−γ

,

(
it
kt

) 1
τ

= Et

 β
(
cυt+1(1−lt+1)

1−υ

cυt (1−lt)
1−υ

) 1−γ
θ ct

ct+1

(
V 1−γt+1

EtV 1−γt+1

)1− 1
θ

×(
a2rt+1 +

(
it+1
kt+1

) 1
τ

(
1− δ + a1 + a2

τ−1

(
it+1
kt+1

)1− 1
τ

))
 ,

1− υ
υ

ct
1− lt

= (1− ζ) kζt z
1−ζ
t l−ζt ,

ct + it = kζt z
1−ζ
t l1−ζt ,

and

kt+1 = (1− δ) kt +G

(
it
kt

)
kt,

together with the law of motion for log zt.

After normalizing the set of equilibrium conditions as described in Appendix 8.3, we write

them in more compact notation:

F
(
k̃t, log z̃t;χ

)
= 0,
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where F is a 5-dimensional function (and where all the endogenous variables in the previous

equation are not represented explicitly because they are functions themselves of k̃t, log z̃t and

χ) and 0 is the vectorial zero.

3.1.2. Approximating the Value Function and Decision Rules

The task now is to take successive derivatives of F and solve for the unknown coeffi cients

of the Taylor expansions of the value function and decision rules that we presented before.

These unknown coeffi cients appear in these derivatives because the augmented equilibrium

conditions are expressed in terms of the different variables and we need to differentiate them

with respect to the states. Those are precisely the terms in the Taylor expansions.

The first step is to evaluate F at χ = 0. This gives us the steady-state values for Ṽss, ĩss,

k̃ss, c̃ss, and l̃ss. This steady state is identical to the steady state of the stochastic neoclassical

growth model with a standard CRRA utility function.

Next, to find the first-order approximation to the value function and the decision rules,

we take first derivatives of the function F with respect to
(
k̃t, log z̃t;χ

)
and evaluate them

at the steady state
(
k̃ss, log z̃ss; 0

)
that we just found to get

Fi

(
k̃ss, log z̃ss; 0

)
= 0 for i ∈ {1, 2, 3} .

This step gives us 15 different derivatives (5 equilibrium conditions times the 3 variables of

F ). With this quadratic 15-equations system, we find the first-order derivatives of the value

function and of 4 decision rules (Vt, it, kt+1, ct, and lt) evaluated at the steady state. We pick

the stable solution by checking the appropriate eigenvalue.

To find the second-order derivatives to the value function and decision rules, we derive Fi
with respect to

(
k̃t, log z̃t;χ

)
and evaluate them at the steady state

(
k̃ss, log z̃ss; 0

)
from the

first step to obtain:

Fij

(
k̃ss, log z̃ss; 0

)
= 0 for i, j ∈ {1, 2, 3} .

This gives us yet a new system of equations. Then, we plug in the terms that we already

know from the steady state and from the first-order approximation and we get that the only

unknowns left are the second-order terms of the value function and of the decision rules.

Quite conveniently, this system is linear and it can be solved quickly. Indeed, all the systems

resulting from derivatives higher than the first one will be linear in the unknown coeffi cients.

Repeating these steps, we can get any arbitrary-order approximation to the value function

and decision rules. As mentioned above, in this paper we stop at order three.
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3.1.3. Approximating Nominal Bonds Yields

To complete our computation, we also need to approximate the yield of nominal bonds. To

do so, we take advantage of our recursive bond price equation (5). First, define:

sat =
(
k̃t − k̃ss, log z̃t − log z̃ss, log πt − log π̄, ωt; 1

)
which is the state vector in deviations with respect to the mean augmented with the difference

of inflation with respect to its mean and the inflation innovation ωt (sa stands for states

augmented).

Then, in similar fashion to the value function and the decision rules, a third-order Taylor

approximation to the yields is:

Rm

(
k̃t, log z̃t, log πt, ωt; 1

)
' Rm,ss +Rm,i,sssat +

1

2
Rm,ij,sssa

i
tsa

j
t +

1

6
Rm,ijl,sssa

i
tsa

j
tsa

l
t

for all m, in which we define:

Rm,ss ≡ Rm,ss

(
k̃ss, log z̃ss, log π̄, 0; 0

)
,

Rm,i,ss ≡ Rm,i

(
k̃ss, log z̃ss, log π̄, 0; 0

)
for i = {1, 2, 3, 4, 5} ,

Rm,ij,ss ≡ Rm,ij

(
k̃ss, log z̃ss, log π̄, 0; 0

)
for i, j = {1, 2, 3, 4, 5} ,

and:

Rm,ijl,ss ≡ Rm,ijl

(
k̃ss, log z̃ss; 0

)
for i, j, l = {1, 2, 3, 4, 5} .

Since in our data set we observe bond yields up to 20 quarters, we need to consider

Et
(
Mt+1

1

πt+1

1

Rt+1,t+m

)
=

1

Rt,t+m

,

form ∈ {1, . . . , 20}. This set of 20 first-order conditions can also be written, in more compact
notation,

F̃
(
k̃t, log z̃t, log πt, ωt;χ

)
= 0.

We can use F̃ evaluated at χ = 0 and the steady-state value Ṽss, ĩss, k̃ss, c̃ss, and l̃ss found

above to find the steady-state values for Rt,t+j for m ∈ {1, . . . , 20}, log πt, and ωt. These last

two are, obviously, log π̄ and 0.

To find the first-order approximation to the nominal bond yields, we proceed as we did

for the perturbation of the value function and decision rules. We take first derivatives of
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the function F̃ with respect to
(
k̃t, log z̃t, log πt, ωt;χ

)
and evaluate them at the steady state(

k̃ss, log z̃ss, log π̄, 0; 0
)
to get:

F̃i

(
k̃ss, log z̃ss, log π̄, 0; 0

)
= 0 for i ∈ {1, 2, 3, 4, 5} .

After substituting for the steady-state values and the first-order derivatives of the value

function and decision rules that we found above, this step gives us a system of equations on

the first-order derivatives of the yields evaluated at the steady state.

To find the second-order approximation to the nominal bond yields, we take deriva-

tives on F̃i with respect to
(
k̃t, log z̃t, log πt, ωt;χ

)
and evaluate them at the steady state(

k̃ss, log z̃ss, log π̄, 0; 0
)
to get

F̃ij

(
k̃ss, log z̃ss, log π̄, 0; 0

)
= 0 for i, j ∈ {1, 2, 3, 4, 5} .

We can use this linear system (together with the steady-state values, the first- and second-

order derivatives of the value function and decision rules, and the first-order derivatives of

the nominal bond yields that we found above) to find the second-order derivatives of the

yields evaluated at the steady state. Repeating these steps, we can get any arbitrary-order

approximation. We stop at order three because that would be enough to get the time-varying

risk premium that we are interested in.

3.2. Role of γ

Direct inspection of the derivatives that we presented before (since the expressions are inor-

dinately long, we cannot include them in the paper) reveals that:

1. The constant terms Vss, varss, or Rm,ss do not depend on γ, the parameter that controls
risk aversion.

2. None of the terms in the first-order approximation, V.,ss, var.,ss, or Rm,.,ss (for all m)

depend on γ.

3. None of the terms in the second-order approximation, V..,ss, var..,ss, or Rm,..,ss depend

on γ, except V33,ss, var33,ss, and Rm,33,ss (for all m). This last term is a constant that

captures precautionary behavior caused by the presence of productivity shocks.

4. In the third-order approximation only the terms of the form V33.,ss, V3.3,ss, V.33,ss and

var33.,ss, var3.3,ss, var.33,ss and Rm,33.,ss, Rm,3.3,ss, Rm,.33,ss (for all m) that is, terms on

functions of χ2, depend on γ.
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These observations tell us three important facts. First, a linear approximation to the

decision rules does not depend on the risk aversion parameter or on the variance level of the

productivity shock. In other words, it is certainty equivalent. Therefore, if we are interested

in recursive preferences, we need to go at least to a second-order approximation. Second,

given some fixed parameter values, the difference between the second-order approximation to

the decision rules of a model with CRRA preferences and a model with recursive preferences

is just a constant. This constant generates a second, indirect effect, because it changes

the ergodic distribution of the state variables and, hence, the points where we evaluate the

decision rules along the equilibrium path. In the third-order approximation, all of the terms

on functions of χ2 depend on γ. Thus, we can use them to further identify the risk aversion

parameter, which is only weakly identified in the second-order approximation as it shows

up only in one term and is not identified at all in the first-order approximation. These

arguments also demonstrate how perturbation methods can provide analytic insights beyond

computational advantages and help in understanding the numerical results in Tallarini (2000),

who implements a recentering scheme that incorporates into the first-order approximation an

effect similar to the second-order approximation constant.16

4. Estimation

Once we have our solution from the previous section, we use it to write a state-space rep-

resentation of the dynamics of the states and observables that will allow us to evaluate the

likelihood function of the model. For this last step, and since our solution is inherently

non-linear (remember that the risk aversion parameter only affects the second- and third-

order coeffi cients of the approximation), we will rely on the particle filter as described in

Fernández-Villaverde and Rubio-Ramírez (2007).

4.1. State-Space Representation

As econometricians, we will observe per capita consumption growth, per capita output growth,

the 1-, 2-, 3-, 4-, and 5-year nominal bond yields, and inflation. Per capita consumption

growth and per capita output growth will provide macro information. The price of the

16This characterization is also crucial because it is plausible to entertain the idea that the richer structure
of Epstein and Zin preferences is not identified (as in the example built by Kocherlakota, 1990). Fortunately,
the second- and third-order terms allow us to learn from the observations. This is not a surprise, though,
as it confirms previous, although somehow more limited, theoretical results. In a simpler environment, when
output growth follows a Markov process, Wang (1993) shows that the preference parameters of Epstein and
Zin preferences are generically recoverable from the price of equity or from the price of bonds. Furthermore,
equity and bond prices are generically unique and smooth with respect to parameters.
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nominal bonds provides us with financial data. Later, we will find that including finance

data is key for the success of our empirical strategy.

Since our DSGE model has only two sources of uncertainty, the productivity shock and

the inflation shock, we need to introduce measurement error to avoid stochastic singularity.

It is common to have measurement error in term structure models. The justification comes

from the idea that we do not observe zero coupon bonds. Instead, we observe the market

prices of bonds with coupons and we need some procedure to back out the zero coupon

bonds. This procedure induces measurement error. Similarly, National Income and Product

Accounts (NIPA) can only provide researchers with an approximated estimate of output and

consumption. Therefore, we will assume that all the variables (except inflation) are observed

subject to a measurement error.17

It is easier to express the solution of our model in terms of deviations from steady state.

Thus, for any variable vart, we let v̂art = vart− varss. Also, we introduce a constant to keep
track of means. Then, the law of motion for the states is

̂̃
kt+1
̂log z̃t+1
̂log πt+1

ωt+1

1


=



ki,sss
i
t + 1

2
kij,sss

i
ts
j
t + 1

6
kijl,sss

i
ts
j
ts
l
t

σεεzt+1

ρl̂og πt + (σωωt+1 + κ0σεεzt+1) + ι
(
σωωt + κ1σε l̂og z̃t

)
ωt+1

1


.

Since our observables are

Yt = (∆ log ct,∆ log yt, Rt,t+4, Rt,t+8, Rt,t+12, Rt,t+16, Rt,t+20, log πt)
′ ,

we need to map ∆ log ct and ∆ log yt into the model-scaled variables c̃t and c̃t−1 and ỹt and

ỹt−1. We start with consumption. We observe that ∆ log ct = log ct − log ct−1 and we have

that ct = c̃tzt−1 by our definition of re-scaled variables. Thus:

∆ log ct = log ct − log ct−1 =

log c̃t + log xt − log c̃t−1 + log xt−1 =

log c̃t − log c̃t−1 + λ+ σzεzt−1.

17Our exogenous process for inflation already has a linear additive innovation ωt+1, which will make an
additional measurement error diffi cult to identify.
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And since ̂̃ct = c̃t − c̃ss, we can write

∆ log ct = log
(̂̃ct + c̃ss

)
− log

(̂̃ct−1 + c̃ss

)
+ ̂log z̃t−1 + λ.

Equivalently,

∆ log yt = log
(̂̃yt + ỹss

)
− log

(̂̃yt−1 + ỹss

)
+ ̂log z̃t−1 + λ.

Hence, in order to simplify our state-space representation, it is convenient to consider(̂̃ct−1, ̂̃yt−1, ̂log z̃t−1

)
as additional (pseudo-)state variables. It is also the case that we need

to map log πt into our states. Since the law of motion of inflation is

log πt − log π̄ = ρ (log πt−1 − log π̄) + (σωωt + κ0σεεzt) + ι (σωωt−1 + κ1σεεzt−1) ,

we need to also consider
(
̂log πt−1, ωt−1

)
as additional (pseudo-)state variables. We use the

notation St to refer to the vector of augmented state variables.
Once this is done, our state-space representation can be written as a transition equation

St+1 =



̂̃
kt+1
̂log z̃t+1
̂log πt+1

ωt+1

1̂̃ct̂̃yt
l̂og z̃t

l̂og πt

ωt



=



ki,sss
i
t + 1

2
kij,sss

i
ts
j
t + 1

6
kijl,sss

i
ts
j
ts
l
t

σεεzt+1

ρl̂og πt + (σωωt+1 + κ0σεεzt+1) + ι
(
σωωt + κ1σε l̂og z̃t

)
ωt+1

1

ci,sss
i
t + 1

2
cij,ssc

i
tc
j
t + 1

6
cijl,ssc

i
tc
j
tc
l
t

yi,sss
i
t + 1

2
yij,sss

i
ts
j
t + 1

6
yijl,sss

i
ts
j
ts
l
t

l̂og z̃t

l̂og πt

ωt



,
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and a measurement equation

Yt =



log
(
c̃ss + ci,sss

i
t + 1

2
cij,ssc

i
tc
j
t + 1

6
cijl,ssc

i
tc
j
tc
l
t

)
− log

(̂̃ct−1 + c̃ss

)
+ ̂log z̃t−1 + λ

log
(
ỹss + yi,sss

i
t + 1

2
yij,sss

i
ts
j
t + 1

6
yijl,sss

i
ts
j
ts
l
t

)
− log

(̂̃yt−1 + ỹss

)
+ ̂log z̃t−1 + λ

R4,ss +Ri
i,4,sssat + 1

2
Rij,4,sssa

i
tsa

j
t + 1

6
Rijl,4,sssa

i
tsa

j
tsa

l
t

R8,ss +Ri
i,8,sssat + 1

2
Rij,8,sssa

i
tsa

j
t + 1

6
Rijl,8,sssa

i
tsa

j
tsa

l
t

R12,ss +Ri
i,12,sssat + 1

2
Rij,12,sssa

i
tsa

j
t + 1

6
Rijl,12,sssa

i
tsa

j
tsa

l
t

R16,ss +Ri
i,16,sssat + 1

2
Rij,16,sssa

i
tsa

j
t + 1

6
Rijl,16,sssa

i
tsa

j
tsa

l
t

R20,ss +Ri
i,20,sssat + 1

2
Rij,20,sssa

i
tsa

j
t + 1

6
Rijl,20,sssa

i
tsa

j
tsa

l
t

log π̄ + ρ ̂log πt−1 + κ0 l̂og z̃t + ι
(
σωωt−1 + κ1σε ̂log z̃t−1

)


+



συ1υ1,t

συ2υ2,t

συ3υ3,t

συ4υ4,t

συ5υ5,t

συ6υ6,t

συ7υ7,t

σωωt


,

where
(
συ1υ1,t συ2υ2,t συ3υ3,t συ4υ4,t συ5υ5,t συ6υ6,t συ7υ7,t 0

)′
is the measurement

error vector. We assume that υi,t ∼ N (0, 1) for all i ∈ {1, . . . , 7} and υi,t ⊥ υj,t for i 6= j and

i, j ∈ {1, . . . , 7}. The eighth element, the one corresponding to inflation, is missing since we
assume no measurement error for inflation.

If we define Wt+1 = (εzt+1, ωt+1)
′ and Vt =

(
υ1,t υ2,t υ3,t υ4,t υ5,t υ6,t υ7,t

)′
, we

can write our transition and measurement equations more compactly as

St+1 = h (St,Wt+1) , (7)

and

Yt = g (St,Vt) . (8)

4.2. Likelihood

We stack the set of structural parameters in our model in the vector:

Υ = (β, γ, ψ, υ, λ, ζ, δ, τ , κ0, ι, κ1, σε, σω, σ1υ, σ2υ, σ3υ, σ4υ, σ5υ, σ6υ, σ7υ)
′ .

The likelihood function L
(
YT ; Υ

)
is the probability of the observations given some parameter

values, where Yt = {Ys}ts=1 for t ∈ {1, . . . , T} is the history of observations up to time t.
Unfortunately, this likelihood is diffi cult to evaluate since we do not even have an analytic

expression for our state-space representation. We tackle this problem by using a sequential
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Monte Carlo.18 First, we factorize the likelihood into its conditional components:

L
(
YT ; Υ

)
=

T∏
t=1

L
(
Yt|Yt−1; Υ

)
,

where L (Y1|Y0; Υ) = L (Y1; Υ) . Then, we condition on the states and integrate with respect

to them to get

L
(
Yt|Yt−1; Υ

)
=

∫ ∫ ∫
L
(
Yt|W t

1,W
t−1
2 ,S0; Υ

)
p
(
W t
1,W

t−1
2 ,S0|Yt−1; Υ

)
dW t

1dW
t−1
2 dS0,

(9)

for t ∈ {2, . . . , T} whereW1,t = εzt,W2,t = ωt,W t
i = {Wi,s}ts=1 for i = 1, 2 and t ∈ {1, . . . , T} ,

and

L (Y1; Υ) =

∫ ∫ ∫
L
(
Y1|W 1

1 ,S0; Υ
)
p
(
W 1
1 ,S0; Υ

)
dW 1

1 dS0. (10)

These expressions illustrate how the knowledge of p (W 1
1 ,S0; Υ) and of the sequence

{
p
(
W t
1,W

t−1
2 ,S0|Yt−1; Υ

)}T
t=2

, (11)

is crucial for our procedure. If we know
(
W t
1,W

t−1
2 ,S0

)
, computing L

(
Yt|W t

1,W
t−1
2 ,S0; Υ

)
is relatively easy; it is a change of variables from W2,t and Vt to Yt. The same is true for
L (Y1|W 1

1 ,S0; Υ) if we know (W 1
1 ,S0). However, given our model, we cannot characterize

neither p (W 1
1 ,S0; Υ) nor the sequence (11) analytically. Even if we could, these two previous

computations still leave open the issue of how to solve for the integrals in (9) and (10).

A common solution to these problems is to substitute p (W 1
1 ,S0; Υ) and

{
p
(
W t
1,W

t−1
2 ,S0|Yt−1; Υ

)}T
t=2

,

by an empirical distribution of draws from them. If we have such draws, we can approximate

the likelihood using

L
(
Yt|Yt−1; Υ

)
' 1

N

N∑
i=1

L
(
Yt|wt,i1 , w

t−1,i
2 , si0; Υ

)
,

18This is not the only possible algorithm to do so, although it is a procedure that we have found useful
in previous work. Alternatives include DeJong et al. (2007), Kim, Shephard, and Chib (1998), Fiorentini,
Sentana, and Shephard (2004), and Fermanian and Salanié (2004).
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where wt,i1 , w
t−1,i
2 , si0 is the draw i from p

(
W t
1,W

t−1
2 ,S0|Yt−1; Υ

)
and

L (Y1; Υ) ' 1

N

N∑
i=1

L
(
Y1|w1,i1 , si0; Υ

)
,

where w1,i1 , s
i
0 is the draw i from p (W 1

1 ,S0; Υ).

Del Moral and Jacod (2002) and Künsch (2005) provide weak conditions under which the

right-hand side of the previous equation is a consistent estimator of L
(
YT ; Υ

)
and a central

limit theorem applies. A law of large numbers will ensure that the approximation error goes

to 0 as the number of draws, N , grows.

Drawing from p (W 1
1 ,S0; Υ) is straightforward in our model. Given parameter values, we

solve the model and simulate from the ergodic distribution of states. Santos and Peralta-

Alva (2005) show that this procedure delivers the empirical distribution of
(
w1,i1 , s

i
0

)
that

we require. Drawing from
{
p
(
W t
1,W

t−1
2 ,S0|Yt−1; Υ

)}T
t=2

is more challenging. A popular

approach to do so is to apply the particle filter (see Fernández-Villaverde and Rubio-Ramírez,

2007, for a more detailed explanation and references).

The basic idea of the filter is to generate draws through sequential importance resam-

pling (SIR), which extends importance sampling to a sequential environment. The following

proposition, formulated by Rubin (1998), formalizes the idea:

Proposition 1. Let
{
wt,i1 , w

t−1,i
2 , si0

}N
i=1

be a draw from p
(
W t
1,W

t−1
2 ,S0|Yt−1; Υ

)
. Let the

sequence
{
w̃t,i1 , w̃

t−1,i
2 , s̃i0

}N
i=1

be a draw with replacement from
{
wt,i1 , w

t−1,i
2 , si0

}N
i=1

where the

resampling probability is given by

qit =
L
(
Yt|wt,i1 , w

t−1,i
2 , si0; Υ

)∑N
i=1 L

(
Yt|wt,i1 , w

t−1,i
2 , si0; Υ

) .
Then

{
w̃t,i1 , w̃

t−1,i
2 , s̃i0

}N
i=1

is a draw from p
(
W t
1,W

t−1
2 ,S0|Yt; Υ

)
.

Proposition 1, a direct application of Bayes’theorem, shows how we can take a draw from

p
(
W t
1,W

t−1
2 ,S0|Yt−1; Υ

)
to get a draw from p

(
W t
1,W

t−1
2 ,S0|Yt; Υ

)
by building importance

weights depending on Yt. This result is crucial because it allows us to incorporate the informa-
tion in Yt to change our current estimate of

(
W t
1,W

t−1
2 ,S0

)
. Thanks to SIR, the Monte Carlo

method achieves suffi cient accuracy in a reasonable amount of time. A naïve Monte Carlo,

in comparison, would just draw simultaneously a whole sequence of
{{
wt,i1 , w

t−1,i
2 , si0

}N
i=1

}T
t=1

without resampling. Unfortunately, this naïve scheme diverges because all the sequences be-

come arbitrarily far away from the true sequence of states, which is a zero measure set. Then,

the sequence of simulated states that is closer to the true state in probability dominates all
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the remaining ones in weight. Simple simulations show that the degeneracy appears even

after very few steps.

Given
{
w̃t,i1 , w̃

t−1,i
2 , s̃i0

}N
i=1

from p
(
W t
1,W

t−1
2 ,S0|Yt; Υ

)
, we can apply the law of motion

for states to generate
{
wt+1,i1 , wt,i2 , s

i
0

}N
i=1

from p
(
W t+1
1 ,W t

2,S0|Yt; Υ
)
. This transition step

puts us back at the beginning of proposition 1, but with the difference that we have moved

forward one period in our conditioning, from t|t− 1 to t+ 1|t.

4.3. Estimation Algorithms

Our paper emphasizes the likelihood-based estimation of DSGE models. In the interest of

space, we will show results for maximum likelihood and comment briefly on how to find results

for Bayesian estimation. Obtaining the maximum likelihood point estimate is complicated

because the shape of the likelihood function is rugged and multimodal. Moreover, the particle

filter generates an approximation to the likelihood that is not differentiable with respect to

the parameters, precluding the use of optimization algorithms based on derivatives. To cir-

cumvent these problems, our optimization routine is a procedure known as covariance matrix

adaptation evolutionary strategy, or CMA-ES (Hansen, Müller, and Koumoutsakos, 2003,

and Andreasen, 2007). The CMA-ES is one of the most powerful evolutionary algorithms for

real-valued optimization and has been applied successfully to many problems.

The CMA-ES approximates the inverse of the Hessian of the log-likelihood function by

simulation. In each step of the algorithm, we simulate m candidate parameter values from

the weighted mean and estimated variance-covariance matrix of the best candidate parameter

values of the previous step. By selecting the best parameter values in each step and by adapt-

ing the variance-covariance matrix to the contour of the likelihood function, we direct the

simulation toward the global maximum of our objective function. Thanks to the estimation

of the variance-covariance matrix from the simulation, we by-pass the need of computing any

derivative. Andreasen (2007) documents the robust performance of CMA-ES and compares

it favorably with more common approaches as simulated annealing.

To reduce the “chatter” of the problem, we keep the innovations in the particle filter

(that is, the draws from the exogenous shock distributions and the resampling probabilities)

constant across different passes of the algorithm. As pointed out by McFadden (1989) and

Pakes and Pollard (1989), this is required to achieve stochastic equicontinuity.

The standard errors reported below come from the bootstrapping procedure described by

Efron and Tibshirani (1993, chapter 6). The estimated model is used to generate 100 artificial

samples of data. These artificial series are used to re-estimate the model 100 times and the

standard errors get computed as the standard deviations of the MLE taken across these 100

replications. This bootstrapping procedure accounts for the finite-sample properties of the
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MLE and avoids the numerical instabilities that often appear while inverting the matrix of

second derivatives of a likelihood function. These instabilities would be even more acute in

our case since we are obtaining a non-differentiable approximation of the likelihood function.

With respect to Bayesian inference, the posterior of the model:

p
(
Υ|YT

)
∝

L
(
YT ; Υ

)
p (Υ)∫

L (YT ; Υ) p (Υ) dΥ
,

is diffi cult, if not impossible, to characterize because the likelihood itself is only approximated

by simulation. However, once we have an estimate of L
(
YT ; Υ

)
thanks to the particle filter,

we can draw from the posterior and build its empirical counterpart by using a Metropolis-

Hastings algorithm. As mentioned before, we omit details to keep the paper focused.

5. Data and Main Results

5.1. Data

We take as our sample the period 1953.Q1 to 2008.Q4. Our output and consumption data

come from the Bureau of Economic Analysis NIPA. We define nominal consumption as the

sum of personal consumption expenditures on non-durable goods and services. We define

nominal gross investment as the sum of personal consumption expenditures on durable goods,

private non-residential fixed investment, and private residential fixed investment. Per capita

nominal output and consumption are defined as the ratio between our nominal output and

consumption series and the civilian non-institutional population over 16. For inflation, we

use the gross domestic product deflator. The data on bond yields are from CRSP Fama-Bliss

discount bond files, which have fully taxable, non-callable, non-flower bonds. Fama and Bliss

construct their data by interpolating observations from traded Treasuries. This procedure

introduces measurement error, possibly correlated across time and cross-sectionally (although

in our estimation, and just to reduce the number of parameters to maximize over, we do not

allow for these correlations).

5.2. Summary Statistics

Table 1 reports the summary statistics from our data. Key observations are as follows. First,

the volatility of output growth is higher than the volatility of consumption growth. Second,

the yield curve is, on average, upward sloping. This points to a positive nominal bond risk

premium. Third, the volatilities of bond yields are downward sloping for maturities of one

year and longer. These are well-known facts and we will study how the model scores along
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Yields
Cons. gr. Output gr. 1Y 2Y 3Y 4Y 5Y Infl. Hours

Mean 2.06% 1.67% 5.56% 5.76% 5.93% 6.06% 6.15% 3.43% 49.99%
St.dev. 1.96% 3.74% 2.91% 2.87% 2.80% 2.76% 2.72% 2.33% 1.12%
25% 0.98% -0.22% 3.42% 3.63% 3.84% 3.99% 4.03% 1.79% 49.36%
50% 2.11% 1.84% 5.36% 5.45% 5.59% 5.65% 5.71% 2.76% 49.99%
75% 3.25% 3.82% 7.15% 7.31% 7.44% 7.57% 7.67% 4.46% 50.79%

Table 1: The table reports the summary statistics of consumption growth, output growth,
bond yields, inflation, and hours worked. All statistics are expressed in annual terms. The
sample period is 1953.Q1 to 2008.Q4.

these dimensions. Also, we do not include hours per capita in our observables because our

model is not capable of generating enough fluctuations in hours. In any case, we want to

put some restrictions on the behavior of the model-based hours. For this reason, we build

a series of hours worked per capita using the index of total number of hours worked in the

business sector and the civilian non-institutional population between 16 and 65. We normalize

hours worked to have mean 0.5 during the sample period (this normalization level is per se

irrelevant) and make υ a function of the rest of the parameters such that, in steady state,

hours worked in our model are always 0.5 for any value of the rest of the parameters.

5.3. Estimation Results

In this section, we report the parameter estimates and assess the extent to which the model

can match the properties of the macro and yield data. To fully understand how the parameters

are identified in our model, we estimate the model in three steps. First, we estimate the model

using all data. Second, we estimate the model excluding inflation. Third, we use only bond

yields. By studying which parameters change by changing information sets, we improve our

understanding of which moments pin down which parameters.

Before proceeding, we fix a subset of the parameters. We do this because estimating a

third-order approximation model, which as we argued before is important for identification, is

extremely time consuming. Time constraints make it unfeasible, in practice, to estimate the

whole set of parameters. Thus, in addition to the calibrated inflation parameters described

above, we set λ = 0.045, ζ = 0.3, and δ = 0.0294. The value of λ is chosen to match the

average growth rate of per capita output that we have in our sample. The values of ζ and δ are

quite standard in the literature. Finally, we set the standard deviation of the measurement

error shocks such that the model explains 75 percent of the standard deviation observed in

the data.
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5.3.1. Data set I: Consumption, output, bond yields, and inflation

We report our first findings in table 2. The table displays estimates of the parameters of

the model. In the first column, we list our estimated parameters. In the second and third

columns, we report the estimates and standard errors if we use consumption growth, output

growth, five bond yields, and inflation in estimation. The fourth and fifth column report the

results if we exclude inflation from the estimation. The last two columns contain the results

if only the five bond yields are used in estimation.

Data Cons. gr., Output gr., Yields, Inflation Cons. gr., Output gr., Yields Yields

MLE Std.Error MLE Std. Error MLE Std.Error

β 0.994 0.0001 0.994 0.0001 0.994 0.0002
γ 79.34 12.234 88.23 10.157 96.75 20.125
ψ 1.731 0.2124 2.087 0.2348 1.775 0.4614
τ 0.032 0.0061 0.063 0.0071 0.026 0.0125
κ0 -0.053 0.0088 -0.012 0.0045 -0.055 0.0124
ι -0.522 0.1018 -0.174 0.0598 -0.175 0.0625
κ1 -0.046 0.0093 0.235 0.124 0.102 0.0897
σε 0.008 0.0009 0.008 0.0008 0.008 0.0012
σω 0.002 0.0002 0.003 0.0003 0.003 0.0005

Table 2: Point Estimates and Standard Errors

We discuss now the result for the whole data set, which we take as our benchmark case, and

explore the other columns in the subsections below. We start with the preference parameters.

We estimate the discount factor, β, to be 0.994. This value, a relatively standard result in the

literature, allows us to match the nominal yield level (remember that we have both inflation

and long-run growth and that both factors affect the nominal yield level). The coeffi cient

that controls risk aversion, γ, is estimated to be around 79, which is rather high.19

We estimate the IES to be 1.73. An estimate higher than one resonates with the para-

meter values picked in the long-run risks literature (for instance, Bansal and Yaron, 2004).

Therefore, we find little support for the notion that the IES is around one, an assumption

that is commonly used for convenience, as Campbell (1993), Tallarini (2000), and others do.

This is not a surprise, because a value of the IES equal to one implies that the consumption-

wealth ratio is constant over time. As we mentioned in the introduction, checking for this

19We need to be careful assessing this number, since our model includes leisure. It happens that, given the
Cobb-Douglas specification of our utility aggregator of consumption and leisure, relative risk aversion is equal
to γ. This does not need to be the case with other aggregators of consumption and leisure. See Swanson
(2009) for a careful investigation.
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implication of the model is hard because wealth is not directly observable, since it includes

human wealth. However, different attempts at measurement, such as Lettau and Ludvigson

(2001) or Lustig, van Nieuwerburgh, and Verdelhan (2007), reject the hypothesis that the

ratio of consumption to wealth is constant.

The combination of the estimated values for the parameters controlling risk aversion and

IES suggests:

θ ≡ 1− γ
1− 1

ψ

=
1− 79.34

1− 1
1.731

= −185.51

indicating very different attitudes toward intertemporal substitution and toward substitution

across states of nature. Moreover, since in our point estimate we have that γ � 1
ψ
, our

representative household has a very strong preference for an early resolution of uncertainty.

Finally, the high value of the IES, higher than one, generates, according to the formula we

derived in section 3.1, a trivial welfare cost of aggregate fluctuactions.

The adjustment cost parameter, τ , is estimated to be 0.032, which indicates substantial

adjustment costs. This estimate comes about because our data favor a situation in which

capital cannot adjust easily to smooth consumption. When this is the case, the SDFfluctuates

more and it is easier to match both premium and volatility of the yield curve. The volatility

of the technology process, σε, is 0.00756. This number is similar to many estimates in the

literature and allows us to nicely match output and consumption volatility. Since the first-

order approximation of our model behaves in the same way as the one from a simple real

business cycle model, and this one is also able to match output and consumption properties,

this finding is not a surprise.

The parameter controlling the MA component of the inflation process, ι, is well into neg-

ative terms, −0.522, and close to the value reported by Stock and Watson (2007), allowing

us to capture the negative first-order autocorrelation and the small higher-order autocorre-

lations of inflation growth observed in the data.20 Since the nominal yield curve slopes up in

the data, κ0 and κ1 are estimated such that the correlation between innovations to inflation

expectations and innovation to the stochastic discount factor expectations implies that infla-

tion is bad news for consumption growth; that is, such that (ρκ0 + ικ1)σε is negative (see,

for a similar reason, Piazzesi and Schneider, 2006). The problem is that observed inflation

volatility imposes a constraint on the maximum for the absolute value of (ρκ0 + ικ1)σε and

σω (estimated to be 0.00201) and, hence, while we can match inflation volatility the model is

barely able to generate an upward-sloping term structure. We will come back to this point

20Stock and Watson (2007) split their sample into two groups: 1960:Q1 to 1983:Q4 and 1984:Q1 to 2004:Q4.
Their estimated values for ι are lower (in absolute value) for the first group and higher for the second. Our
sample period 1953.Q1 to 2008.Q4 includes their two groups and, as expected, our estimate is right in the
middle of their two estimates.
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momentarily.

Table 3 displays means (panel A) and volatilities (panel B) of consumption growth, output

growth, five bond yields, and inflation. In each panel, the first row displays the sample

moments in the data. The second row corresponds to the estimates of the model for which

we use all available data. The third row uses the estimates based on consumption growth,

output growth, and five bond yields, but omit inflation data in estimation. The last row uses

the estimates that we obtain using only bond yields in estimation. As before, the sample

period for the data is 1953.Q1 to 2008.Q4.

Table 3 tells us that the model that uses all the data does a fair job at matching the mean of

consumption growth and the average level of the yields. However, it has a bit more problems

with output growth and with the average slope of the yields. The difference between the

5-year and 1-year yields amounts to 59 basis points in the data, whereas our model produces

an average yield spread of only 17 basis points. Beeler and Campbell (2009) and Koijen et

al. (2010) show that it is also a challenge to generate realistic nominal bond risk premia

in standard long-run risks models. Furthermore, our estimated model does reasonably well

with inflation volatility, but underestimates the volatility of bond yields by about a factor

of two. Hence, our model has a diffi cult time jointly reproducing the salient features of the

term structure of nominal interest rates and inflation.

Table 4 has a structure similar to table 3, but reports the autocorrelation of consumption

growth (panel A), the 1-year bond yield (panel B), and inflation (panel C) for lag lengths

varying from one quarter to ten quarters. The model is able to generate the autocorrelation

patterns remarkably well. This is an advantage of a likelihood-based method, which tries

to match the whole set of moments of the data, including the autocorrelations, instead of

focusing on a limited set of moments, as the GMM.

5.3.2. Data set II: Consumption, output, and bond yields

To gain further insight into why the model does not generate a substantial bond risk premium

and volatility of bond yields, we re-estimate our model using only parts of the data. We first

omit the observations on inflation. In column 4 of table 2, we see how omitting inflation

leads to an increase in the risk aversion coeffi cient and changes the estimates of the inflation

parameters. This is because these parameters are no longer disciplined by observed inflation.

In particular, κ0 and κ1 are estimated such that the absolute value of (ρκ0 + ικ1)σε and σω
are twice as big. Table 3 shows that this leads to a dramatic improvement in terms of the

bond risk premium and volatilities of bond yields. The model now replicates the observed

bond risk premium and bond yield volatilities, at least for shorter maturities. This success

of the model is accomplished at a cost. We now overestimate the volatility of inflation; it
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Panel A: Means

Yields
Cons. gr. Output gr. 1Y 2Y 3Y 4Y 5Y Inflation

Observed Data 2.06% 1.67% 5.56% 5.76% 5.93% 6.06% 6.15% 3.43%
All data 2.12% 2.11% 5.92% 5.98% 6.05% 6.09% 6.09% 3.67%
All data, but no inflation 2.12% 2.11% 5.63% 5.78% 5.92% 6.04% 6.13% 3.65%
Yields 2.12% 2.10% 5.54% 5.74% 5.90% 5.99% 6.11% 3.68%

Panel B: Volatilities

Yields
Cons. gr. Output gr. 1Y 2Y 3Y 4Y 5Y Inflation

Data 1.96% 3.74% 2.91% 2.87% 2.80% 2.76% 2.72% 2.33%
All data 2.40% 2.91% 1.79% 1.64% 1.50% 1.38% 1.28% 2.32%
All data, but no inflation 2.54% 2.95% 3.28% 3.00% 2.75% 2.53% 2.33% 3.75%
Yields 2.32% 2.85% 3.31% 3.03% 2.78% 2.56% 2.46% 3.79%

Table 3: Means (Panel A) and volatilities (Panel B) of consumption growth, output growth,
five bond yields, and inflation.

is 2.33% in the data, and the estimates imply a volatility of inflation of 3.75%. Omitting

inflation data is inconsequential for matching the autocorrelation patterns in consumption

growth, the 1-year bond yield, and inflation in table 4.

This exercise illustrates the importance of a joint estimation of inflation and structural

parameters. Without the constraint of having to jointly match inflation and the yield curve,

the model is suffi ciently flexible to capture selected aspects of the data. This is an excellent

example of how simple calibration exercises, by focusing on a set of moments selected by the

researcher without tight discipline, are fraught with peril.

5.3.3. Data set III: Bond yields

As a last exercise, we estimate the model parameters using only information contained in bond

yields. Perhaps surprisingly, the model estimates and their implications for the term structure

are roughly unaffected if we omit consumption growth and output growth in estimation. The

risk aversion parameter increases even further, to 96.75, and the adjustment cost falls to

0.026. The slope of the average nominal yield curve increases slightly We read this result as

indicating that yield data (slopes and volatilities) carry a large amount of information about

structural parameters of the economy, including the discount factor, risk aversion and the IES.

This emphasizes the potentiality of incorporating finance data into the standard estimation

33



Panel A: Consumption growth

Lag length 1Q 2Q 3Q 4Q 5Q 6Q 7Q 8Q 9Q 10Q
Data 0.32 0.17 0.18 0.09 -0.03 0.06 0.01 -0.151 -0.04 0.01
All data 0.37 0.04 -0.01 -0.07 -0.05 -0.07 -0.03 -0.05 -0.06 0.02
All data, but no inflation 0.38 0.03 -0.01 -0.07 -0.06 -0.07 -0.03 -0.05 -0.06 0.02
Yields 0.48 0.07 -0.01 -0.08 -0.06 -0.07 -0.05 -0.06 -0.06 0.01

Panel B: 1-year bond yield

Lag length 1Q 2Q 3Q 4Q 5Q 6Q 7Q 8Q 9Q 10Q
Data 0.95 0.91 0.87 0.81 0.76 0.71 0.67 0.64 0.61 0.58
All data 0.96 0.92 0.88 0.83 0.79 0.75 0.7 0.66 0.62 0.58
All data, but no inflation 0.97 0.93 0.89 0.83 0.8 0.75 0.71 0.67 0.63 0.6
Yields 0.95 0.91 0.87 0.82 0.78 0.74 0.69 0.65 0.61 0.57

Panel C: Inflation

Lag length 1Q 2Q 3Q 4Q 5Q 6Q 7Q 8Q 9Q 10Q
Data 0.88 0.83 0.8 0.77 0.71 0.67 0.61 0.59 0.55 0.54
All data 0.80 0.77 0.74 0.69 0.66 0.63 0.58 0.54 0.50 0.47
All data, but no inflation 0.94 0.90 0.86 0.81 0.77 0.73 0.68 0.64 0.60 0.56
Yields 0.94 0.90 0.86 0.81 0.77 0.73 0.68 0.64 0.60 0.56

Table 4: Autocorrelation of consumption growth (Panel A), the 1-year bond yield (Panel B),
and inflation (Panel C).
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of DSGE models as a key additional source of information. Also, this result confirms Hall’s

(1988) intuition that a cross-section of asset yields is highly informative about the values of

preference parameters.

6. Extensions

Despite some empirical shortcomings, our previous estimation has shown that a rich DSGE

model with production and recursive preferences can be successfully taken to the data. Thus,

we have opened the door to a large number of potential extensions. We discuss several that

can be solved using our estimation procedure and that we believe might improve the fit of

the model to the data. We leave them, though, for future work, since they will complicate

the current paper, already a lengthy piece with much new content to digest.

Predictable technology growth We assume technology growth is i.i.d., which might

be too restrictive. We can extend the model to feature a predictable component in technology

growth. Such a model is analyzed, for instance, in Croce (2006) and relates to the long-run

risk literature (Bansal and Yaron, 2004, Hansen, Heaton, and Li, 2008, and Kaltenbrunner

and Lochstoer, 2008).

Internal habit formation In our specification of recursive preferences, the period

utility is of the CRRA type. We can enrich the model to allow for habit formation in the

period utility. Habit formation preferences have been successfully applied in asset pricing by

for instance Constantinides (1990) and Campbell and Cochrane (1999).

Taylor rule We assumed an exogenous process for inflation. A natural extension of our

model is to endogenize the price process using, for instance, a Taylor rule as in Ang, Dong,

and Piazzesi (2007). In this case, we not only embed the Taylor rule in an arbitrage-free

term structure model, but also impose all equilibrium restrictions implied by an otherwise

standard DSGE model.

Variable rare disasters Gabaix (2009) shows that variable rare disasters might be a

fruitful way to think about asset pricing in a production economy. Gabaix constructs a model

in which the real business cycle properties of the model are unaffected relative to a standard

model without rare disaster, but the asset pricing properties are improved substantially. We

can enrich our model and estimate such models as well. This extension, however, would

depend on our ability to have a perturbation method that can properly capture the effect of

large, yet rare shocks.
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7. Conclusions

We have studied the term structure of interest rates in a DSGE model in which the repre-

sentative agent household has Epstein and Zin preferences. We have estimated the model by

maximum likelihood using a solution method that perturbs the value function. Our estima-

tion procedure, thus, imposes all economic restrictions implied by the equilibrium model.

Our paper has methodological and substantive contributions. Methodologically, we have

shown how such a rich model can be accurately computed and estimated, thanks to the

combination of perturbation methods and the particle filter. This leads the way for a large set

of future applications. Our substantive findings are that the data indicate large levels of risk

aversion, high levels of the IES, and high adjustment costs. The cross-equation restrictions

imposed by the equilibrium of the model, in particular by the presence of endogenous physical

capital accumulation, limits the ability of the model to jointly account for the slope of the

nominal yield curve and the associated volatilities. However, we have pointed out a number

of potential avenues of improvement that may solve this problem. All those can be explored

for the first time in the context of a likelihood-estimated DSGE models that can move toward

the integration of macro and finance observations with the tools that we have provided in

this paper.
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8. Appendices

In the next four appendices, we offer some further technical details about several parts of the

paper. First, we show how to derive the SDF of the model. Second, we show that the value

function representing the social planner’s problem formulation of our model is homogeneous of

degree ν. With these two results, in the third appendix, we write a stationary representation of

the model. The last appendix explains how we maximize the resulting loglikelihood function.

8.1. Derivation of the SDF

First, to economize on notation, we rewrite the household’s preferences as

Ut =

[(
cνt (1− lt)1−ν

)1−ρ
+ β

(
Et
[
U1−γt+1

]) 1−ρ
1−γ

] 1
1−ρ

where ρ = 1/ψ.

In the optimum, the household holds any asset with price pt and payoff xt+1 such that:

∂

∂ξ
Ut (ct − ξpt, ct+1 + ξxt+1)

∣∣∣∣
ξ=0

= 0.

Thus:

∂

∂ct
Ut (ct − ξpt, ct+1 + ξxt+1) pt = βUρ

t

(
Et
[
U1−γt+1

]) 1−ρ
1−γ−1
t

E
[
U−γt+1

∂Ut+1
∂ct+1

xt+1

]
.

For the left-hand side, we have:

∂

∂ct
Ut (ct − ξpt, ct+1 + ξxt+1) =[(

cνt (1− lt)1−ν
)1−ρ

+ β
(
Et
[
U1−γt+1

]) 1−ρ
1−γ

] ρ
1−ρ (

cνt (1− lt)1−ν
)−ρ

νcν−1t (1− lt)1−ν

= Uρ
t

(
cνt (1− lt)1−ν

)1−ρ
νc−1t .

The optimality condition therefore implies (and switching from Ut to Vt to respect our

notational convention):

(
cνt (1− lt)1−ν

)1−ρ
νc−1t pt

= β
(
Et
[
V 1−γ
t+1

]) γ−ρ
1−γ
t

E
[
V −γt+1

(
V ρ
t+1

(
cνt+1 (1− lt+1)1−ν

)1−ρ
νc−1t+1

)
xt+1

]
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and hence:

pt =
β
(
Et
[
V 1−γ
t+1

]) γ−ρ
1−γ
t

Et
[
V ρ−γ
t+1

(
cνt+1 (1− lt+1)1−ν

)1−ρ
νc−1t+1xt+1

]
(
cνt (1− lt)1−ν

)1−ρ
νc−1t

= Et

β(cνt+1 (1− lt+1)1−ν

cνt (1− lt)1−ν

)1−ρ
c−1t+1
c−1t

 Vt+1

Et
[
V 1−γ
t+1

] 1
1−γ

ρ−γ

xt+1

 .
The SDF is therefore given by:

Mt+1 = β

(
cνt+1 (1− lt+1)1−ν

cνt (1− lt)1−ν

)1−ρ
ct
ct+1

 Vt+1

Et
[
V 1−γ
t+1

] 1
1−γ

ρ−γ

= β

(
cνt+1 (1− lt+1)1−ν

cνt (1− lt)1−ν

) 1−γ
θ

ct
ct+1

 V 1−γ
t+1

Et
[
V 1−γ
t+1

] 1
1−γ

1− 1
θ

which is the formula that we use in the main body of the paper.

8.2. Homotheticity

Taking advantage of the fact that the welfare theorems hold in our model, its equilibrium

can be characterized by the solution of the social planner’s problem:

V (kt, zt;χ) = max
ct,lt

[(
cνt (1− lt)1−ν

) 1−γ
θ +

(
Et
[
V 1−γ (kt+1, zt+1;χ)

]) 1
θ

] θ
1−γ

(12)

subject to:

ct + kt+1 = kζt (ztlt)
1−ζ + (1− δ) kt +G

(
it
kt

)
kt.

As mentioned before, nothing of substance in the following argument depends on working

with the social planner’s problem, rather than with the competitive equilibrium. It just avoid

having to deal with heavier notation (as we would need to do, for example, in models with

nominal rigidities).

We now show that the value function is homothetic of degree ν, a result that we use in

the main text to rewrite our problem in a stationary form. We build on the argument by

Epstein and Zin (1989), Dolmas (1996), and specially Backus, Routledge, and Zin (2007).
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First, note that for any a > 0, we can rework the resource constraint as:

ct
a

+
kt+1
a

=

(
kt
a

)ζ (zt
a
lt

)1−ζ
+ (1− δ) kt

a
+G

(
it
kt

)
kt
a
.

For our purposes, it suffi ces to show that a function that is homogeneous of degree ν

satisfies (12). If this is the case, by uniqueness of the solution to the Bellman equation,

we know that V needs to be homogeneous of degree ν. Hence, consider a value function

homogeneous of degree ν of the form:

Ṽ (kt+1, zt+1;χ) = aνṼ (kt+1/a, zt+1/a;χ) ,

We plug this function into the Bellman equation:

Ṽ (kt, zt;χ) = max
ct/a,lt

[(
cνt (1− lt)1−ν

) 1−γ
θ +

(
Et
[
aν(1−γ)Ṽ 1−γ (kt+1/a, zt+1/a;χ)

]) 1
θ

] θ
1−γ

= aν max
ct/a,lt

[((ct
a

)ν
(1− lt)1−ν

) 1−γ
θ

+
(
Et
[
Ṽ 1−γ (kt+1/a, zt+1/a;χ)

]) 1
θ

] θ
1−γ

where the term after aν is the value function Ṽ (kt+1/a, zt+1/a;χ) subject to:

ct
a

+
kt+1
a

=

(
kt
a

)ζ (zt
a
lt

)1−ζ
+ (1− δ) kt

a
+G

(
it
kt

)
kt
a
.

This in turn implies:

V (kt, zt;χ) = aνV (kt/a, zt/a;χ) .

In other words, if we divide capital and productivity by a, we can divide consumption by a

and still satisfy the Bellman equation. This shows that the value function is homogeneous of

degree ν.

The homotheticity result can be strengthened to show that

V (kt, zt;χ) = zνt V
(
k̃t, 1;χ

)
= zνt Ṽ

(
k̃t;χ

)
. (13)

This stronger result can be useful in some investigations where we want to characterize the

structure of the value function. This formulation would not make much difference in our

perturbation approach because, in any case, we would need to take derivatives of (13) with

respect to zt to find the coeffi cients of the decision rule associated with zt.
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8.3. Stationary Recursive Form of the Model

Taking advantage of the result in appendices 8.1 and 8.2, we can easily make the model

stationary by defining ṽart = vart
zt−1

for any nonstationary variable vart. Note that, given the

law of motion of productivity, we have that:

z̃t =
zt
zt−1

= exp (λ+ χσzεzt) .

We can go equation by equation. First, the value function:

zυt−1Vt = max

[(
zυt−1c̃

υ
t (1− lt)1−υ

) 1−γ
θ + β

(
z
υ(1−γ)
t EtV 1−γ

t+1

) 1
θ

] θ
1−γ

⇒

Vt = max

[(
c̃υt (1− lt)1−υ

) 1−γ
θ + βz̃

υ 1−γ
θ

t

(
EtV 1−γ

t+1

) 1
θ

] θ
1−γ

.

Second, the optimality condition between leisure and consumption:

1− υ
υ

zt−1c̃t
1− lt

= zt−1w̃t ⇒
1− υ
υ

c̃t
1− lt

= w̃t

Third, the stochastic discount factor:

zt
zt−1

ξ̃t+1

ξ̃t
= β

(
zυt c̃

υ
t+1 (1− lt+1)1−υ

zυt−1c̃
υ
t (1− lt)1−υ

) 1−γ
θ
zt−1c̃t
ztc̃t+1

(
z
υ(1−γ)
t V 1−γ

t+1

z
υ(1−γ)
t EtV 1−γ

t+1

)1− 1
θ

⇒

z̃t
ξ̃t+1

ξ̃t
= βz̃

υ 1−γ
θ
−1

t

(
c̃υt+1 (1− lt+1)1−υ

c̃υt (1− lt)1−υ

) 1−γ
θ

c̃t
c̃t+1

(
V 1−γ
t+1

EtV 1−γ
t+1

)1− 1
θ

Fourth, the Euler equation for capital:

(
zt−1̃it

zt−1k̃t

) 1
τ

= Et

z̃t ξ̃t+1
ξ̃t

a2rt+1 +

(
zt̃it+1

ztk̃t+1

) 1
τ

1− δ + a1 +
a2

τ − 1

(
zt̃it+1

ztk̃t+1

)1− 1
τ

⇒
(
ĩt

k̃t

) 1
τ

= Et

z̃t ξ̃t+1
ξ̃t

a2rt+1 +

(
ĩt+1

k̃t+1

) 1
τ

1− δ + a1 +
a2

τ − 1

(
ĩt+1

k̃t+1

)1− 1
τ


Fifth, the Euler equation for nominal bonds:

RtEtz̃t
ξ̃t+1

ξ̃t

1

πt+1
= 1
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Sixth, output:

zt−1ỹt = zζt−1k̃
ζ
t (ztlt)

1−ζ ⇒ ỹt =
z1−ζt

z1−ζt−1
k̃ζt (lt)

1−ζ ⇒ ỹt = k̃ζt (z̃tlt)
1−ζ

Seventh, the resource constraint:

zt−1c̃t + zt−1̃it = zt−1ỹt ⇒ c̃t + ĩt = ỹt

Eight, law of motion for capital:

ztk̃t+1 = (1− δ) zt−1k̃t +

a1 +
a2

1− 1
τ

(
zt−1̃it

zt−1k̃t

)1− 1
τ

 zt−1k̃t ⇒

z̃tk̃t+1 = (1− δ) k̃t +

a1 +
a2

1− 1
τ

(
ĩt

k̃t

)1− 1
τ

 k̃t

Ninth, and finally, input prices:

zt−1w̃t = (1− ζ)
zt−1ỹt
lt
⇒ w̃t = (1− ζ)

ỹt
lt

rt = ζ
zt−1ỹt

zt−1k̃t
⇒ rt = ζ

ỹt

k̃t

Collecting all terms:

Vt = max

[(
c̃υt (1− lt)1−υ

) 1−γ
θ + βz̃

υ 1−γ
θ

t

(
EtV 1−γ

t+1

) 1
θ

] θ
1−γ

,

1− υ
υ

c̃t
1− lt

= w̃t,

z̃t
ξ̃t+1

ξ̃t
= βz̃

υ 1−γ
θ
−1

t

(
c̃υt+1 (1− lt+1)1−υ

c̃υt (1− lt)1−υ

) 1−γ
θ

c̃t
c̃t+1

(
V 1−γ
t+1

EtV 1−γ
t+1

)1− 1
θ

,

(
ĩt

k̃t

) 1
τ

= Et

z̃t ξ̃t+1
ξ̃t

a2rt+1 +

(
ĩt+1

k̃t+1

) 1
τ

1− δ + a1 +
a2

τ − 1

(
ĩt+1

k̃t+1

)1− 1
τ

 ,
RtEtz̃t

ξ̃t+1

ξ̃t

1

πt+1
= 1,

ỹt = k̃ζt (z̃tlt)
1−ζ ,

c̃t + ĩt = ỹt,
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z̃tk̃t+1 = (1− δ) k̃t +

a1 +
a2

1− 1
τ

(
ĩt

k̃t

)1− 1
τ

 k̃t,

w̃t = (1− ζ)
ỹt
lt
,

rt = ζ
ỹt

k̃t
,

and

z̃t = exp (λ+ χσzεzt)

Now, we can write:

1

Rt

(
EtV 1−γ

t+1

) 1
θ
−1

= Etβz̃
υ 1−γ

θ
−1

t

(
c̃υt+1 (1− lt+1)1−υ

c̃υt (1− lt)1−υ

) 1−γ
θ

c̃t
c̃t+1

(
V 1−γ
t+1

)1− 1
θ

1

πt+1
= 1.

8.4. Optimizing the Loglikelihood

The estimation of the model was done with mixed-programming as follows. Mathematica

computed the analytical derivatives of the value function and decision rules and generated

Fortran 95 code that included those expressions. The derivatives depend on the parameters

as symbolic variables. Then, we link the output into a Fortran 95 code that evaluates the

solution of the model for each parameter value as implied by the maximization algorithm or

by a Markov chain Monte Carlo, as a random-walk Metropolis-Hastings. The Fortran 95

code was compiled in Intel Visual Fortran 10.3 to run on Windows-based machines. We

used a Xeon Processor 5160 EMT64 at 3.00 GHz with 16 GB of RAM.

As we pointed out in the main text, the CMA-ES is an evolutionary algorithm that

approximates the inverse of the Hessian of the loglikelihood function by simulation. We

iterate in the procedure until the change in the objective function is lower than some tolerance

level. In each step g of the routine, m candidate n−parameter values are proposed from a

normal distribution:

Υg
i ˜N

(
Υg−1
µ , (σg)2Cg−1

µ

)
, for i = 1, ...,m

where Υg−1
µ ∈ Rn and Cg−1

µ ∈ Rn × Rn are the mean and variance-covariance matrix of the

µ best candidates for optimal parameter values in step g − 1 and σg is a scaling parameter.

The normal distribution can be truncated to have support only on that part of the parameter

space where the parameters take admissible values (for example, positive discount factors).

To save on notation, we re-order the draws in decreasing relation to the value they attain in
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the likelihood of the model:

L
(
YT ; Υi

)
≥ L

(
YT ; Υi+1

)
The mean of step g is defined as:

Υg
λ =

µ∑
i=1

wiΥ
g
i

where the weights wi are defined between 0 and 1 (and its sum normalizes to 1) and µ is

smaller than m.

The variance-covariance of step g fits the search distribution to the contour lines of the

likelihood function. To do so, we set:

Cg
λ = (1− ccov)Cg−1

λ︸ ︷︷ ︸
term 1

+

+
ccov
µcov

(
P g
c (P g

c )′ + cc (2− cc) (1−Hg)
)

︸ ︷︷ ︸
term 2

+ccov

(
1− 1

µcov

) µ∑
i=1

wi

(σg)2
(
Υg
1:µ −Υg−1

µ

) (
Υg
1:µ −Υg−1

µ

)′
︸ ︷︷ ︸

term 3

(14)

where:

P gc = (1− cc)P g−1c +Hg
√
cc (2− cc)µeff

(
Υg
λ −Υg−1

λ

σg

)

Hg =

 1 if ‖P gc ‖√
1−(1−cg)2g

<
(

1.5 + 1
n−0.5

)
E (‖N (0, I)‖)

0 otherwise

and cc, ccov, µeff , and µcov are constants. Term 1 of (14) is a standard persistence term

from previous variance-covariance matrix to dampen changes in Cg
λ. Term 2 captures the

correlation across steps of the algorithm through the evolution of P g
c . Term 3 controls for a

large number of points in the simulation. The term

E (‖N (0, I)‖) =
√

2Γ

(
n+ 1

2

)/
Γ
(n

2

)
≈
√
n+O

(
1

n

)
is the expectation of the euclidean norm of a random normal vector.

43



Finally, the scaling parameter evolves according to:

σg = σg−1 exp

[
cσ
dσ

(
‖P g

σ‖
E (‖N (0, I)‖) − 1

)]
P g
σ = (1− cσ)P g−1

σ +
√
cσ (2− cσ)Bg−1 (Dg−1 − 1

)−1 (
Bg−1)′ √µeff

σg
(
Υg
µ −Υg−1

µ

)
where cσ and dσ are constants and Bg−1 is an orthogonal matrix and Dg−1 a diagonal matrix

such that Cg
λ = Bg (Dg)2 (Bg)′ .

Standard values for the constants of the algorithm are:

m = 4 + b3 lnnc
µ = bm/2c

where b·c is the integer floor of a real number, and

wi =
ln (µ+ 1)− ln i∑n

j=1 (ln (µ+ 1)− ln j)

µeff = µcov =

(
µ∑
i=1

w2i

)−1
cσ =

µeff + 2

n+ µeff + 3

cc =
4

n+ 4

ccov =
1

µcov

2(
n+
√

2
)2 +

(
1− 1

µcov

)
min

(
1,

2µeff − 1

(n+ 2)
2

+ µeff

)

dσ = 1 + 2 max

(
0,

√
µeff − 2

n+ 1
− 1

)
max

0.3, 1− n

min
(
gmax,

Lmaxeval

m

)
+ cσ

where gmax is the maximum number of steps and Lmaxeval is the maximum number of likelihood

evaluations. Finally, we can initialize the algorithm by setting Υ0
λ to some standard calibrated

parameters, σ0 to 1, P g
c = 0, and Σ0

µ to an identity matrix. Of all these constants, Hansen and

Kern (2004) recommend only to change m to adapt the algorithm to particular problems. As

one could have guessed, Hansen and Kern show that by increasing the number of simulations

m, the global properties of the search procedure improve.
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