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partial differential equations on fractals
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Abstract. In this paper, we present numerical procedures to compute so-
lutions of partial differential equations posed on fractals. In particular, we
consider the strong form of the equation using standard graph Laplacian ma-
trices and also weak forms of the equation derived using standard length or
area measure on a discrete approximation of the fractal set. We then intro-
duce a numerical procedure to normalize the obtained diffusions, that is, a
way to compute the renormalization constant needed in the definitions of the
actual partial differential equation on the fractal set. A particular case that
is studied in detail is the solution of the Dirichlet problem in the Sierpinski
triangle. Other examples are also presented including a non-planar Hata tree.
Keywords: Fractal diffusion, Laplacian on a fractal, Renormalization con-
stant.
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1. Introduction

In recent years we have seen many applications of fractal sets in modeling sciences.
Especially, to study several processes that can be modeled using fractals and specially self-
similar structures. We mention processes related to diffusion on fractal sets witch have
several possible applications, including diffusion of substances in biological structures
and flow inside fractures in modeling fluid flow in fractured porous media, among other
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models. See [2, 3]. In this paper, we consider fractals defined as self-similar sets with the
additional properties of being post-critically finite; see [2]. These self-similar sets can be
approximated (in the Hausdorff metric) by a finite union of sets generated by removing
a finite number of vertices from a graph approximation of the fractal set.
We recall the definition of the Laplace operator, a standard model for fractal diffusion.
Then, introduce numerical approximation procedures of the presented model. It is im-
portant to stress that our approximation procedure consists of renormalizing standard
approximation methods on two- and three-dimensions such as the finite difference and
the finite element method. See for example [9] where a finite element method is de-
signed and analyzed. Note that in [9], the authors assume the renormalization constant
is known. We do not need to compute the renormalization constant analytically and in-
stead of of that, we approximate it numerically. We also mention that the finite element
formulation implemented here is based on weak forms computed using standard length
and area measures restricted to approximations of the fractal sets. In particular, in the
case of the Sierpinski triangle, the approximation by the finite element method can be
summarized as follows:

The computations are carried out on approximations of the fractal (that could be
a union of edges or triangles).

Approximation of the computations of derivatives for which we use classical deriva-
tives of piecewise linear functions in one and two dimensions. Alternatively, we also
approximate derivatives using standard weight and adjacency graph matrices.

Approximation of the self-similar measure. Here we test different approximations:
1) The measure induced by the length measure restricted to the edges of the tri-
angles in the finite graph that represents the current approximation of the fractal,
and 2) The measure induced by the area measure restricted to the triangles of the
current approximation of the fractal.

Approximation of the values for the rescaling or renormalizing to obtain renormal-
ized operators and guarantee that the obtained solution approximates the solution
of the continuous problem.

In the last step, the finite element procedure above is then renormalized with a pre-
computation of the renormalization constant to obtain the correct approximation of the
Laplace operator in the Sierpinski triangle. The computation of the renormalization
constant involves the comparison of two (not-normalized) solutions at consecutive (levels
of refinement) approximations of the fractal set. We call this procedure the renormalized
FEM, or rFEM for short. We illustrate the performance of the rFEM numerically for the
solution of a Dirichlet problem on the Sierpinski triangle and a realization of the Hata
tree. We also present a renormalized Finite Difference (rFD) procedure using the same
idea.
The rest of the paper is organized as follows. In Section 2 we recall some examples of
self-similar sets. Section 3 is dedicated to reviewing the definition of the graph laplacian
operator.
In Section 4 we present several formulations of the Dirichlet problem as well as the
proposed procedure for the computation of the renormalization constant. We finish this
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section with numerical experiments and illustrations of the correctness of our method.
In Section 5 we present some conclusions.

2. Examples of self-similar sets

This section reviews some facts related to self-similar sets, its constructions and also
related to the approximation of fractal sets. We follow [1, 2, 3].

A self similar set is obtained by applying a fixed point functional iteration. Let (X, d)
be a Hausdorff metric space and denote by C(X) the metric space of all compact subsets
of a metric space equipped in the Hausdorff metric. Assume you have contractions
fi : X → X, i = 1, 2, 3, ..., N and define F : C(X) → C(X) by F (A) =

⋃
1≤i≤N fi(A)

for all A ∈ C(X). Then F have a unique fixed point K. Also for any A ∈ C(X), Fn(A)
converge to K when n→ ∞ with respect to Hausdorff metric. We then have that there
exists a unique non-empty compact K ⊂ X such that

K = f1(K) ∪ f2(K) ∪ ... ∪ fN (K). (1)

The set K is the self-similar set associated with {f1, f2, . . . , fN} and this is a fractal set.
The term self-similar is given to K because K is the union of images of itself by the
contractions. See [2] and reference therein.

In order to obtain particular examples, we need only the initial metric and the finite set
of contractions. In particular, we can consider the following examples of subsets of Rd,
d = 1, 2, 3 with the Euclidean distance together with a finite family of contractions. See
[1, 2, 3].

The Kosh curve: Let a1 = (0, 0) and a2 = (1, 0) be the initial nodes for the
construction. This set is denoted with W0 = [a1, a2]

1. Consider the contractions:

fi(x) =
1

3
r(θ)i · x+

(
i

3
, 0

)
where i = 0, 1, 2, 3.

Here r(θ) is the rotation matrix with angle θ. We define the set {Wn : n ∈ N0} ⊆ R2

inductively by,

Wn+1 = f0(Wn) ∪ f1(Wn) ∪ f2(Wn) ∪ f3(Wn).

We can define K = limn→∞Wn with the limit in the Hausdorff metric. The set
K is called the Kosh curve. In particular, Wn approximates the Kosh curve where
we construct discrete differential operators that are approximate to differential
operators defined on the Kosh curve K.

1For a, b ∈ R2, [a, b] denote the line segment from a to b.
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Figure 1. The first four iterations of the construction off the Kosh curve: W1 (Up right), W2

(Up left), W3 (down right), W4 (down left).

The Sierpinski triangle: The Sierpinski triangle is one of the most known examples
of self-similar, see [4]. It can be consider a benchmark fractal where several ques-
tions and problems can be test out. A construction of the triangle goes as follows.
Let a0 = (0, 0), a1 = (1, 0), a2 = ( 12 ,

√
3
2 ) the vertices of the equilateral triangle

X ⊆ R2. We consider the set X with the Euclidean distance. For each i = 0, 1, 2
we define the affine mapping

fi : X → X, (2)

x → fi(x) =
1

2
(x− ai) + ai. (3)

Let W0 = [a0, a1] ∪ [a1, a2] ∪ [a2, a0] and we define {Wn : n ∈ N0} by

Wn+1 = f0(Wn) ∪ f1(Wn) ∪ f2(Wn) for all n ∈ N0.

As before, we see that K = W∞ = limn→∞Wn (where the limit is taken in the
Hausdorff metric), and Wn can be viewed as an approximation of K where differ-
ential operators can be computed to approximation differential operators defined
on K.

The Hata tree in the plane: Let p1 = (0, 0) and p2 = (1, 0) the vertices of
W0 = [p1, p2]. Define

f0(x) =
x

3
,

f1(x) =

(
1

3
, 0

)
+
x

3
· r(π/3),

f2(x) =

(
1

3
, 0

)
+
x

3
,

f3(x) =

(
2

3
, 0

)
+
x

3
· r(π/3),

f4(x) =

(
2

3
, 0

)
+
x

3
.
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Figure 2. The first four iterations of the Sierpinski triangle: W1 (up right), W2 (up left), W3

(up right), W4 (up left).

Where r(θ) denotes the θ-rotation matrix. Define

Wn+1 =

4⋃
i=0

fi(Wn) for all n.

The first four iterations are illustrated in Figure 3.
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Figure 3. The first four iteration of the Hata tree W1 (up right), W2 (up left), W3 (down right)
and W4 (down left).

Non-planar Hata tree: Let p1 = (0, 0, 0) and p2 = (0, 0, 1) the vertices of the set
W0 = [p1, p2]. Define,

f0(x) =
x

3
,

f1(x) =

(
0, 0,

1

3

)
+ k2

x

3
+
k1 · n1

2
+

√
3

2
· k1 · n2,

f2(x) =

(
0, 0,

1

3

)
+
x

3
,

f3(x) =

(
0, 0,

2

3

)
+ k2

x

3
− 1

2
· k1 · n1 +

√
3

2
· k1 · n2,

f4(x) =

(
0, 0,

2

3

)
+ k2

x

3
− k1 · n1,

f5(x) =

(
0, 0,

2

3

)
+
x

3
.

Where k1 = 1
3 sin(π/4), k2 = 1

3 cos(π/4) and
{
n1, n2,

x
|x|

}
is and orthonormal set.
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Figure 4. The firstfour iteration of the Hata tree. See W1 (Up right), W2 (Up left), W3 (Down
right) and W4 (Down Left).

The previous fractals can be built from the set of initial vertices V0 and use the sequence
Vn+1 = f1(Vn) ∪ ... ∪ fN (Vn). We will use this notation later on. For example, for the
Sierpinski triangle the initial vertices are V0 = {a1, a2, a3} and we will have the sequence
Vn+1 = f1(Vn)∪ ...∪ f3(Vn), and Sierpinski triangle is V∞ =

⋃∞
i=1 fi(Vn). From now on,

the development of the theory will focus on the Sierpinski triangle.

3. Laplacian on a graph

In this section, we review the construction of the Laplace operator and the energy on a
graph; in particular, we introduce the renormalization constant, which is important to
get a finite limit of the energies associated with a family of graphs that approximates a
fractal. See [1, 2, 3].
Let G(V,W ) a finite graph, where V = {v1, v2, ..., vn} determines the set of vertices and
W the set of edge (without orientation) of V . If v, w ∈ V and exist an edge between v
and w we write v ∼ w ∈ W . define the adjacency matrix AG associate to a graph G as
the n× n matrix AG = [aij ]

n
i,j=1, where

aij =

 1, if vi ∼ vj ∈W,

0, in other case.

The weight matrix PG of G is the diagonal matrix of dimension n× n defined by PG =
[pij ]

n
i,j=1 with pij = 0 when i ̸= j and pii is the number of adjacent vertices to vi,
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i = 1, . . . , n. Therefore,
pii = #{w : v ∼ w ∈W}. (4)

The Laplacian matrix associate to G(V,W ) is given by

∆G = PG −AG.

If u : V → R we define the energy of u by

EG(u, u) =
∑
x∼y

(u(x)− u(y))2.

The bilinear form associated to the energy is

EG(u, v) =
∑
x∼y

(u(x)− u(y))(v(x)− v(y)).

We denote E(u) = E(u, u). If we introduce the vectors U⃗ , V⃗ ∈ Rn given by U⃗ =

{u(x)}x∈V and V⃗ = {v(x)}x∈V , then

EG(u, v) = U⃗T∆GV⃗ and EG(u, u) = U⃗T∆GU⃗ .

We observe that matrix ∆G is the matrix representation of the energy EG. Now we
consider the approximations {Vn}∞n=1 to a fractal set K. We denote the energy associated
to Vn by

Ẽn(u, v) = EGn
(Un, Vn). (5)

The renormalized energy of level n = 2, 3, . . . can be computed for un : Vn → R as

En(un, un) = rnẼn(un, un). (6)

Here rn is a renormalization constant needed in order to obtain a non-increasing sequence
of renormalized energies En, n = 0, 1, . . . . This step is necessary to obtain well-defined
energy defined on K that we introduce as a limit of the renormalized energies above. For
more details see [2] and references therein.

3.1. The case of the Sierpinski triangle K

For the Sierpinski triangle, see [9], we obtain that the energy for f : V∞ =
⋃

n Vn → R is
defined for n ∈ N0 by

En(u, u) =
(
5

3

)n ∑
x∼ny

(u(x)− u(y))2, (7)

where x ∼n y is the edge that connects to x with y and contained in Wn. That
is, the renormalization constant is r = (5/3). Then, we can compute E(u, u) :=
limn En(u|Vn

, u|Vn
). Introduce the renormalized Laplace operators by

∆n = 5n∆̃n. (8)
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If we define the measure µn on Vn by assigning full measure 1 to Vn and stating that
each cell has the same measure (3−n), we see that we have

En(u, u) = −
∫
u∆nudµ

n.

Using this it is defined the Laplace operator in K by

−
∫
u(x)∆u(x)µ(dx) = E(u, u). (9)

Here µ is the standard self-similar measure associated to K that can computed as the
limit of the measure νn in the sense that

∫
K

gdµ = lim
n→∞

∫
Vn

gdνn,

where we note that,

∫
Vn

gdνn = 3−n

2

3

∑
x∈Vn\V0

g(x) +
1

3

∑
x∈V0

g(x)

 . (10)

From here on, we will focus our study on the Sierpinski triangle.

4. Formulations for the Dirichlet problem

Given g : V∞ → R and u0 : V0 → R, we seek for u : V∞ → R such that{
−∆u(x) = g(x) x ∈ V∞ \ V0,
u(x) = u0(x), x ∈ V0,

(11)

where ∆u(x) is defined in (9) and u0 is the values of u in x ∈ V0. We call this the strong
formulation of the Dirichlet problem. Using the integration by parts formula we have

−
∫

∆u · vdµ = E(u, v).

Therefore, we can write the problem as seeking for u with bounded energy, u ∈ H1, such
that E(u, v) =

∫
gvdµ for all v ∈ H1

0 ,

u(x) = u0(x), x ∈ V0.
(12)

Here, H1 = {u : V∞ → R, E(v, v) < +∞} and H1
0 = {v ∈ H1 : v(x) = 0, x ∈ V0}. We

refer to these formulation as the weak form of the Dirichlet problem.
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4.2. Finite difference approximation

To approximate the solution of (11) in Vn we consider ∆n, the renormalized Laplace
operator (defined for the Sierpinski triangle in (8)). Let the approximation be defined
by uFD : Vn → R that can be written as uFD = {uFD

n (x)}x∈Vn
and we partitioned it as

follows
uFD = {{uFD

n (x)}x∈V0
, {uFD

n (x)}x∈Vn\V0
} = [u0, uI ].

Note that u0 is know and corresponds to the boundary values. Analogously for bFD =
{g(x)}x∈Vn = [b0, bI ]. We obtain the block structure

∆n =

(
∆0,0 ∆0,I

∆I,0 ∆I,I

)
.

We compute uI as the solution of

∆I,IuI = bI −∆I,0u0.

The main issue with this discrete formulation is that we need to know the renormalization
constant: the value 5n in the case of the Sierpinski triangle, see (8). The renormalization
constant can be viewed as a scaling of the forcing term in the linear system. This scaling
can be approximated as explained next.

4.3. Computation of the renormalization constant

First we consider the finite difference method renormalization constant. The idea is to
use the problem, {

−∆u(x) = 1 x ∈ K,

u(x) = 0, x ∈ V0.
(13)

Denote by qn and approximation of the renormalization factor that we want to compute.
The space of study is Vn/V0. We can approximate (13) by{

qn∆̃nun(x) = 1 x ∈ Vn \ V0,
un(x) = 0, x ∈ V0.

We want to compute the value qn. Numerically we can compute the solution of the
problem, see [7], {

∆̃zn = 1 x ∈ Vn \ V0,
zn(x) = 0, x ∈ V0.

We must have that zn(x) = qnun(x), x ∈ Vn since ∆̃n is nonsingular. For Vn+1 we will
have zn+1 = qn+1un+1. Note that zn and zn+1 can be calculated without knowing qn.
For n large enough we should have,

zn = qnun with un ≈ u, (14)
zn+1 = qn+1un+1 with un+1 ≈ u, (15)
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where u is the exact solution of (13). Therefore we should be able to use the approxi-
mation,

q ≈ qn,n+1 :=
qn+1un+1(x)

qnun(x)
=
zn+1(x)

zn(x)
, (16)

where x ∈ Vn\V0. See some numerical illustration in Table 1 for the case of the Sierpinski
triangle. In this case we see hat limn→∞ qn,n+1 = 5.

(n, n+ 1) maxx qn,n+1 meanxqn,n+1

(3,4) 5 5
(4,5) 5 5
(5,6) 5 5

Table 1. Values of qn,n+1 for the Sierpinski triangle, given for (16).

A similar procedure can be implemented for the energy renormalization constants. The
weak form of (13) is written as,{

r−nẼ(u, v) =
∫
vdµn for all v ∈ Vn \ V0,

un(x) = 0 x ∈ V0.

Compute the solution of the graph energy problem (without renormalization),{
Ẽ(zn, v) =

∫
vdµn for all v ∈ Vn \ V0,

zn(x) = 0 x ∈ V0.

We can then define the approximation,

r =
r−nun(x)

r−n−1un+1(x)
≈ rn,n+1 =

zn(x)

zn+1(x)
. (17)

Here x ∈ Vn \ V0. See a numerical verification in Table 2. In this case we should have
limn→∞ rn,n+1 ≈ 1.666... = 5

3 .

4.4. Renormalized finite elements methods- rFEMs

Now we construct approximations for the weak form (12). That is, we propose approxi-
mations for the computations of renormalized energy bilinear forms by rescaling standard
approximations as introduced in Section 4.3.
We defined Pn = {u : Vn → R}. We then project the weak formulation into the space
Pn. In the Galerkin formulation we seek to find u ∈ Pn such thatE(u, v) =

∫
gvdµ for all v ∈ Pn ∩H1

0 ,

u(x) = u0(x), x ∈ V0.
(18)

(n, n+ 1) maxx rn,n+1 meanxrn,n+1

(3,4) 1.6667 1.6667
(4,5) 1.6667 1.6667
(5,6) 1.6667 1.6667

Table 2. Values of rn,n+1 for the Sierpinski triangle, given by (17).
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Both u and v are defined on Vn, then this formulation is equivalent toEn(u, v) =
∫
gvdµ for all v ∈ Pn ∩H1

0 ,

u(x) = u0(x), x ∈ V0.
(19)

We propose several classical finite element methods procedures in one and two dimensions
to approximate the renormalized energy. Note that we can use the energy En rather than
the limit E . The renormalization constant is then computed by a procedure similar to
the one explained previously. We recall that in this section we consider the case of the
Sierpinski triangle.

Integrals along the edges

Recall that En(u, v) = −
∫
∆nu · vdµ1

n when u, v : Vn → R. Introduce the bilinear form,

E(1)
n (u, v) =

∑
x∼ny

∫ y

x

u′v′dν1n, (20)

where u′ denotes the one dimensional derivative along [x, y] of the linear interpolation of
the vertex values u(x) and u(y). The measure ν1n is defined as the length measure along
the edges of Wn (rescaled to obtain total length 1). Note that for each n there are total
3n+1 edges (3 for each cell). Each edge of Vn has length 2−n. Given a total length of
3(3/2)n before length rescaling.

We consider the following discrete problem,2E(1)
n (u, v) =

∫
gvdν1n for all v ∈ Pn ∩H1

0 ,

u(x) = u0(x), x ∈ V0.
(21)

As before we can write u = uI +uG where uG(x) = g(x), x ∈ V0; uG(x) = 0, x ∈ Vn \V0.
Analogously uI ∈ Pn tal such that uI(x) = 0 for x ∈ V0. We then have,

E(1)
n (uI , v)dν

1
n =

∫
gdν1n − E(1)

n (uG, v).

This is equivalent to the linear system,

A(1)
n u = b(1)n .

Let Vn \ V0 = {x1, x2, ..., xp} the set of interior vertices and we have,

aij =
∑
x∼ny

∫ y

x

φ′
xi
φ′
xj
dν1n,

where φxi
is the linear interpolation of the characteristic functions of {xi} in Vn. We

also have
bi =

∫
g · φjdµn −

∫
u′Gφ

′
jdν

1
n.
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It is easy to see that

∫
gφjdν

1
n =

∑
a∼nxj

∫ 2−n

0

22n
(
g(b)x+ g(xj)(2

−n − x)
)
(2−n − x)dx.

Recall that, on the left hand side above we use the piecewise liner interpolation of the
nodal value of g. The previous formulation have to be renomarlized to(r(1))nE(1)

n (u, v) =

∫
gvdν(1)n for all v ∈ Pn ∩H1

0 ,

u(x) = u0, x ∈ V0.
(22)

We note the following relation between the renormalized measure and the measure in-
duced by the length measure, for any n, we have∫

fdµ ≈ 2−n

∫
fdν(1)n , (23)

that follows by computing the length integrals using the trapezoidal rule.

The renormalization constant r(1) can be approximated using the procedure described
in Section 4.3 by solving consecutive refinement level approximations with the constant
function 1 as the right hand side and Dirichlet boundary conditions. See (17). In Table
3 we show the results of computing the renormalization constant.

In this case the renormalization constant can also be computed analytically. Integration
by parts and the fact that we use piecewise linear interpolation (u′′ = 0 inside edges)
yields

E(1)
n (u, v) =

∑
x∼ny

u′(t)v(t)|yx −
∫ y

x

u′′(t)v(t)dν1n =
∑
x∼ny

u′(y)v(y)− u′(x)v(x).

Having into account that the length of the edges of the n approximation of K is 1/2n,
we get,

E(1)
n (u, v) =

∑
x∼ny

u(y)− u(x)

1/2n
v(y)− u(y)− u(x)

1/2n
v(x) = 2n

∑
x∼ny

(u(y)−u(x))(v(y)−v(x)).

Therefore,

A(1)
n = 2n · ∆̃n and ∆n =

(
5

2

)n

A(1)
n .

Due to (23) and (7) we see that renormalization constant for the family A(1)
n is r(1) = 5

4 .
In Table 3 we show the results of computing the renormalization constant using the
procedure explained in Section 4.3. This a numerical verification that for the case of the
Sierpinski triangle the computation agrees with the exact value of the renormalization
constant just derived.
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(n, n+ 1) maxx rn,n+1 meanxrn,n+1

(4,5) 1.2500 1.2500
(5,6) 1.2500 1.2500
(6,7) 1.2500 1.2500

Table 3. Values of rn,n+1 for the Sierpiski triangle using integrals along Edges.

Area integrals

Introduce the bilinear form,

E(2)
n (u, v) =

∑
τ∈Kn

∫
τ

∇u∇vdν(2)n , (24)

where ∇u denotes the two-dimensional gradient of the two-dimensional linear interpo-
lation of the nodal value of u in the triangle τ . The measure ν(2)n is the area measure
restricted to Kn and normalized such that the total area of (all the triangles of) Vn is
one. Note that, for each n, there is 3n each of them of area

√
3
4

1
22n for a total area of

√
3
4 ( 34 )

n before rescaling.

We formulate the following discrete problem,E(2)
n (u, v) =

∫
gvdν(2)n for all v ∈ Pn ∩H1

0 ,

u(x) = u0(x), x ∈ V0,
(25)

This time the previous formulation is equivalent to the linear system,

A(2)
n u = b(2)n ,

where
ai,j =

∫
∇φi∇φjdν

(2)
n ,

and
bi =

∫
fφidν

(2)
n .

As before, a renormalization is needed, that is,(r(2))nE(2)
n (u, v) =

∫
gvdν(2)n for all v ∈ Pn ∩H1

0 ,

u(x) = u0(x), x ∈ V0.
(26)

The renormalization constant r(2 can be approximated using the procedure described
in Section 4.3 by solving consecutive refinement level approximations with the constant
function 1 as the right hand side and Dirichlet boundary conditions. See (17). In Table
4 we show the results of computing the renormalization constant.
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In order to verify our computations we compute the renormalization constant analytically.
This is possible in this case. Recall that,

E(2)
n (f, g) =

∑
τ∈Kn

∫
τ

∂f

∂x

∂g

∂x
+
∂f

∂y

∂g

∂y
dν2n.

We use standard finite element analysis. Introduce the reference basis functions

P̂1(x̂, ŷ) = 1− x̂− ŷ, P̂2(x̂, ŷ) = x̂, P̂3(x̂, ŷ) = ŷ.

defined in the reference triangle τ̂ with vertices (0, 0), (1, 0) and (0, 1). This reference
triangle can be mapped into the triangles of Kn by an affine mapping in two dimensions.
If we consider the triangle τ of Kn with vertices x⃗1 = (x1, y1), x⃗2 = (x2, y2) and x⃗3 =
(x3, y3), this mapping is given by Fτ : τ̂ → τ defined by

F (x⃗) = V x⃗+ x⃗1; V =

 x2 − x1 y2 − y1

x3 − x1 y3 − y1

 .

Define Pi(x⃗) = P̂i(F
−1(x⃗)), i = 1, 2, 3. Any linear function on τ is a linear combination

of the basis functions P1, P2, P3, in particular if u is a linear function on τ we have
u(ψ) = u(x)P1(ψ)+u(y)P2(ψ)+u(z)P3(ψ). From the definition of Pi is easy to see that

V −1 =


∂P2

∂x

∂P3

∂x

∂P2

∂y

∂P3

∂y

 =
1

det(V )

(
y3 − y1 y1 − y2
x1 − x3 x2 − x1

)
.

Moreover, we also have,

∂P1

∂x
= −∂P2

∂x
− ∂P3

∂x
,

∂P1

∂y
= −∂P2

∂y
− ∂P3

∂y
.

We also recall that det(V ) =
√
3l2

2 where l = 2−n is the diameter of the triangle. We can
then compute,

aA(P1, P1) =

∫
τ

(
∂P1

∂x

)2

+

(
∂P1

∂y

)2

dν(2)

=
4

3l4

∫
τ

(y3 − y2)
2 + (x3 − x2)

2dν(2)

=
4

3l2

∫
τ

1dν(2) since (y3 − y2)
2 + (x3 − x2)

2 = l2,

=

√
3

3
.
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(n, n+ 1) maxx rn,n+1 meanxrn,n+1

(4,5) 1.2500 1.2500
(5,6) 1.2500 1.2500
(6,7) 1.2500 1.2500

Table 4. Values of rn,n+1 for the Sierpiski triangle using area measures.

Analogously we have,

aA(P1, P2) =

∫
τ

∂P1

∂x

∂P2

∂x
+
∂P1

∂y

∂P2

∂y
dν(2)

=
4

3l4

∫
τ

−l2 + ⟨(x2 − x1, y2 − y1), (x3 − x1, y3 − y1)⟩dν(2)

=
4

3l2

∫
τ

l2(1− cos(60◦))dν(2) = −
√
3

6
.

Having into account that each interior node belongs only to two-triangles and that two
distinct nodes share an edge in at most one triangle, we conclude that the assembled
global matrix is given by

A2
n = [aij ] =

{√
3
3 if i = j,

−
√
3
6 if i ̸= j,

(27)

where i and j corresponds to the index of interior nodes. We see that,

A(2)
n = [aij ] =

√
3

6
·

{
pii if i = j.

−1 if i ∼n j.
, and then A(2)

n =

√
3

6
· ∆̃n. (28)

Recall that ∆̃n was defined as the graph laplacian of the n approximation of the Sierpinski
triangle.
We note the following relation between the renormalized measure and the measure in-
duced by the area measure, for any n, we have∫

fdµn ≈ 4√
3
4−n

∫
fdν(2)n , (29)

that follows by computing the length integrals using the trapezoidal rule.
From (28) and (29), we then have that the exact value of the renormalization constant is
the same as the one for the construction based on length measures. This result verifies
the numerical computations obtained in Table 4.

4.5. Illustrations of the numerical methods

This section shows the numerical solution of the Laplace equation posed in some fractal
sets. In particular, we consider the Sierpinski triangle, the Kosh curve, and two Hata
trees. As we discussed before, we can approximate the solution by

Renormalized Finite Difference (rFD):
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• Pre-processing: We solve a model problem with a given Dirichlet condition
and g(x) = 1 as the forcing term in several graph approximations of the fractal
set to compute an approximation of the renormalization constant.

• Online step: we solve for the actual forcing term with the renormalized graph
laplacian using the approximation of the renormalization constant computed
in the pre-processing step.

Renormalized Finite Element Method with line integrals (rFEM1D):

• Pre-processing: approximation of the renormalization constant as before.

• Online step: solution with actual right-hand side

Renormalized Finite Element Method with area integrals (rFEM2D):

• Pre-proccesing: approximation of the renormalization constant as before.

• Online step: solution with actual right hand side

The Sierpinski triangle

For problems posed on the Sierpinski triangle recall that V0 = {a0, a1, a2}. We want to
approximate the solution of −∆u(x, y) = g(x, y),

u(a0) = 1, u(a1) = 0, u(a2) = 0.

In Figure 5 we illustrate some results.
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Figure 5. Approximated solution with rFD (left), rFEM1D (center) and rFEM2D (right). Here
g(x, y) = sin(x + y), u(a0) = 1, u(a1) = u(a2) = 0 and we consider V5 the fifth level approxima-
tion of the Sierpinski triangle.
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The Kosh curve

For problems posed on the Kosh curve, recall that V0 = {(0, 0), (1, 0)}. We want to
approximate the solution of

 −∆u(x, y) = g(x, y),

u(a0) = 1, u(a1) = 0.

We use the method introduced in section 4.4; if we associate the Laplacian with the
energy defined by integrations over the edges, we have

(r(1))nE(1)
n (u, v) =

∫
gvdµn for all v ∈ Pn ∩H1

0 ,

u(x) = u0(x), x ∈ V0,
(30)

where µn is the length measure restricted to edges and r(1) = 16
9 was computed in Table

(6) using the procedure described in Section 4.3.
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Figure 6. Approximated solution with rFD (left) and rFEM1D (right). Here g(x, y) = sin(x+y),
u(a0) = 1, u(a1) = 0 and we consider V5 the fifth level approximation of the Kosh curve.
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(n, n+ 1) maxx rn,n+1 meanxrn,n+1

(3,4) 1.7778 1.7778
(4,5) 1.7778 1.7778
(5,6) 1.7778 1.7778

Table 5. Values of rn,n+1 that the Kosh curve.
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Figure 7. Approximated solution with rFD (left) and rFEM1D (right). Here g(x, y) = 0,
u(a0) = 1, u(a1) = 0 and we consider V3 the third level approximation of the Kosh curve.

The Hata tree

In the find method, the solution of the following equation is the same as that studied
before, where V0 = {(0, 0), (1, 0)}. −∆u(x, y) = g(x, y),

u(a0) = 1, u(a1) = 0,

if we associate the Laplacian with the energy on edge, we have(r(1))nE(1)
n (u, v) =

∫
gvdµn for all v ∈ Pn ∩H1

0 ,

u(x) = u0, x ∈ V0.
(31)

Where µn is the self-similar measure that the Kosh curve and the renormalization con-
stant is given for r(1) = 5

3 , see Table 6.
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(n, n+ 1) maxx rn,n+1 meanxrn,n+1

(3,4) 1.6667 1.6667
(4,5) 1.6667 1.6667
(5,6) 1.6667 1.6667

Table 6. Values of rn,n+1 for the Hata tree.
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Figure 8. Approximated solution with rFD (left) and rFEM1D (right). Here g(x, y) = sin(x+y),
u(a0) = 1, u(a1) = 0 and we consider V3 the third level approximation of the Hata tree.
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Figure 9. Approximated solution with rFD (left) and rFEM1D (right). Here g(x, y) = 0,
u(a0) = 1, u(a1) = 0 and we consider V3 the third level approximation of the Hata tree.

Hata tree in the space

For this fractal we use only rFD method (4.2), In Figure 10 we present a computed
solution.
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Figure 10. Approximated solution with rFD. Here g(x, y) = 0, u(a0) = 1, u(a1) = 0 and we
consider V3 the third level approximation of the Hata tree in the space.

5. Conclusions

This paper designed a numerical procedure to approximate solutions to diffusion problems
on self-similar fractal sets. We start with a discrete approximation of the fractal and the
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derivatives in standard non-renormalized formulations. We can then precompute the
renormalization constant needed to approximate the actual differential operators on the
fractal set. In particular, we present examples with the Sierpinski triangle using standard
graph weights and adjacency matrices (Finite Difference method) or using week forms
with length or area measures (Finite Element method). In the Finite Element method
with the length measure, the derivatives in the weak forms are classical derivatives along
the edges with integration concerning the length measure. In the finite element method
with the area measure, we use partial derivatives with integration in two dimensions
on triangles of the approximation of the Sierpinski triangle. We also present additional
illustrations with the Kosh curve and the Hata tree.
It is also important to mention that the implementation of proposed finite element meth-
ods are simple and do not have significant changes with respect to the finite element
method for differential equations in open domains. Also, the renormalization constant
does not need to be known a priori. We can use finite element codes that work on tri-
angulations in general, and only the “ triangulation” or graph that approximates the
fractal must be used as input for these codes. The renormalization constant can be pre-
computed as proposed in this paper. We observe that diffusion processes on these fractal
sets can be approximated by classical diffusion processes (involving classical derivatives)
on fractal approximations. These must be rescaled by the scale parameter that can be
precomputed. The authors will explore this idea and the related numerical analysis in
future works.
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