481 research outputs found
A new Stark decelerator based surface scattering instrument for studying energy transfer at the gas-surface interface
We report on the design and characterization of a new apparatus for performing quantum-state resolved surface scattering experiments. The apparatus combines optical state-specific molecule preparation with a compact hexapole and a Stark decelerator to prepare carrier gas-free pulses of quantum-state pure CO molecules with velocities controllable between 33 and 1000 m/s with extremely narrow velocity distributions. The ultrahigh vacuum surface scattering chamber includes homebuilt ion and electron detectors, a closed-cycle helium cooled single crystal sample mount capable of tuning surface temperature between 19 and 1337 K, a Kelvin probe for non-destructive work function measurements, a precision leak valve manifold for targeted adsorbate deposition, an inexpensive quadrupole mass spectrometer modified to perform high resolution temperature programmed desorption experiments and facilities to clean and characterize the surface
Relating CCN activity, volatility, and droplet growth kinetics of ?-caryophyllene secondary organic aerosol
International audienceThis study investigates the droplet formation characteristics of secondary organic aerosol (SOA) formed during the ozonolysis of sesquiterpene ?-caryophyllene (with and without hydroxyl radicals present). Emphasis is placed on understanding the role of semi-volatile material on Cloud Condensation Nucleus (CCN) activity and droplet growth kinetics. Aging of ?-caryophyllene SOA significantly affects all CCN-relevant properties measured throughout the experiments. Using a thermodenuder and two CCN instruments, we find that CCN activity is a strong function of temperature (activation diameter at ~0.6% supersaturation: 100±10 nm at 20°C and 130±10 nm at 35°C), suggesting that the hygroscopic fraction of the SOA is volatile. The water-soluble organic carbon (WSOC) is extracted from the SOA and characterized with Köhler Theory Analysis (KTA); the results suggest that the WSOC is composed of low molecular weight (?1) slightly surface-active material that constitute 5?15% of the SOA mass. These properties are similar to the water-soluble fraction of monoterpene SOA, suggesting that predictive understanding of SOA CCN activity requires knowledge of the WSOC fraction but not its exact speciation. Droplet growth kinetics of the CCN are found to be strongly anticorrelated with WSOC fraction, suggesting that the insoluble material in the SOA forms a kinetic barrier that delays droplet growth. These results have important implications for the droplet formation characteristics of SOA, and the atmospheric relevance of CCN measurements carried out at temperatures different from ambient
Sensory reweighting of proprioceptive input during balance control in healthy elderly
Sensory (re)weighting is the automated and unconscious process of combining sensory inputs, e.g. proprioception, graviception and vision, during human balance control. Typically reliable sensory inputs are weighted more than unreliable and noisy sensory inputs, to prevent deterioration of human balance control. Malfunctioning of sensory reweighting may be an important determinant of balance deficits in elderly with the consequence of falls. In this study we compared sensory (re)weighting of prioprioceptive input of the ankle joints, as one of the available sensory inputs, in healthy young versus healthy elderly during upright stance. Ten healthy young (aged 20-30 years) and ten healthy elderly (aged 75-80 years) were asked to maintain balance while proprioceptive input of each ankle was perturbed by rotations of the support surfaces around the ankle axes. Support surface rotations were applied with specific frequency content and increasing perturbation amplitude over trials. Body sway and reactive ankle torques were recorded. The sensitivity of the ankle torques to perturbation amplitude was determined using system identification techniques. The gain of a sensitivity function describes the ratio of perturbation amplitude and response amplitude as a function of frequency. Overall, elderly had a significant higher gain of the sensitivity function than young subjects. Increasing amplitude of the sensory perturbation resulted in a significant decrease of the gain of the sensitivity function from the perturbation amplitude to the ankle torque. Significant frequency-dependent interactions between group and perturbation amplitude could be established. A significant higher ankle torque sensitivity to perturbations indicates that elderly rely more strongly on proprioceptive input to maintain balance compared to younger subjects. Different reactions of elderly versus young subjects to perturbation amplitudes are indicative of differences in sensory reweighting. Results are important to understand interplay between available sensory inputs in balance and falling
Taraxerol abundance as a proxy for in situ Mangrove sediment
Mangrove sediments are valuable archives of relative sea-level change if they can be distinguished in the stratigraphic record from other organic-rich depositional environments (e.g., freshwater swamps). Proxies for establishing environment of deposition can be poorly preserved (e.g., foraminifera) in mangrove sediment. Consequently, differentiating mangrove and freshwater sediment in the stratigraphic record is often subjective. We explore if biomarkers can objectively identify mangrove sediment with emphasis on their utility for reconstructing relative sea level. Our approach is specific to identifying in situ sediment, which has received less attention than identifying allochthonous mangrove organic matter. To characterize mangrove and non-mangrove (freshwater) environments, we measured n-alkane, sterol, and triterpenoid abundances in surface sediments at three sites in the Federated States of Micronesia. Elevated taraxerol abundance is diagnostic of sediment accumulating in mangroves and taraxerol is particularly abundant beneath monospecific stands of Rhizophora spp. Taraxerol was undetectable in freshwater sediment. Other triterpenoids are more abundant in mangrove sediment than in freshwater sediment. Using cores from Micronesian mangroves, we examine if biomarkers in sediments are indicative of in situ deposition in a mangrove, and have utility as a relative sea-level proxy. Taraxerol concentrations in cores are comparable to surface mangrove sediments, which indicates deposition in a mangrove. This interpretation is supported by pollen assemblages. Downcore taraxerol variability may reflect changing inputs from Rhizophora spp. rather than diagenesis. We propose that taraxerol is a proxy that differentiates between organic sediment that accumulated in mangrove vs. freshwater environments, lending it utility for reconstructing relative sea level
Modern foraminifera, δ\u3csup\u3e13\u3c/sup\u3eC, and bulk geochemistry of central Oregon tidal marshes and their application in paleoseismology
We assessed the utility of δ13C and bulk geochemistry (total organic content and C:N) to reconstruct relative sea-level changes on the Cascadia subduction zone through comparison with an established sea-level indicator (benthic foraminifera). Four modern transects collected from three tidal environments at Siletz Bay, Oregon, USA, produced three elevation-dependent groups in both the foraminiferal and δ13C/bulk geochemistry datasets. Foraminiferal samples from the tidal flat and low marsh are identified by Miliammina fusca abundances of \u3e 45%, middle and high marsh by M. fusca abundances of \u3c 45% and the highest marsh by Trochamminita irregularis abundances \u3e 25%. The δ13C values from the groups defined with δ13C/bulk geochemistry analyses decrease with an increasing elevation; − 24.1 ± 1.7‰ in the tidal flat and low marsh; − 27.3 ± 1.4‰ in the middle and high marsh; and − 29.6 ± 0.8‰ in the highest marsh samples. We applied the modern foraminiferal and δ13C distributions to a core that contained a stratigraphic contact marking the great Cascadia earthquake of AD 1700. Both techniques gave similar values for coseismic subsidence across the contact (0.88 ± 0.39 m and 0.71 ± 0.56 m) suggesting that δ13C has potential for identifying amounts of relative sea-level change due to tectonics
Measurement of the ambient organic aerosol volatility distribution: application during the Finokalia Aerosol Measurement Experiment (FAME-2008)
A variable residence time thermodenuder (TD) was combined with an Aerodyne Aerosol Mass Spectrometer (AMS) and a Scanning Mobility Particle Sizer (SMPS) to measure the volatility distribution of aged organic aerosol in the Eastern Mediterranean during the Finokalia Aerosol Measurement Experiment in May of 2008 (FAME-2008). A new method for the quantification of the organic aerosol volatility distribution was developed combining measurements of all three instruments together with an aerosol dynamics model. <br><br> Challenges in the interpretation of ambient thermodenuder-AMS measurements include the potential resistances to mass transfer during particle evaporation, the effects of particle size on the evaporated mass fraction, the changes in the AMS collection efficiency and particle density as the particles evaporate partially in the TD, and finally potential losses inside the TD. Our proposed measurement and data analysis method accounts for all of these problems combining the AMS and SMPS measurements. <br><br> The AMS collection efficiency of the aerosol that passed through the TD was found to be approximately 10% lower than the collection efficiency of the aerosol that passed through the bypass. The organic aerosol measured at Finokalia is approximately 2 or more orders of magnitude less volatile than fresh laboratory-generated monoterpene (α-pinene, β-pinene and limonene under low NO<sub>x</sub> conditions) secondary organic aerosol. This low volatility is consistent with its highly oxygenated AMS mass spectrum. The results are found to be highly sensitive to the mass accommodation coefficient of the evaporating species. This analysis is based on the assumption that there were no significant reactions taking place inside the thermodenuder
Trends in incidence, mortality, and causes of death associated with systemic sclerosis in Denmark between 1995 and 2015:a nationwide cohort study
Variables and sources. Diagnoses (ICD-8 and ICD-10) and medication (ATC, Anatomical Therapeutical Chemical) codes used. (DOCX 20 kb
Space Weathering Experiments on Spacecraft Materials
A project to investigate space environment effects on specific materials with interest to remote sensing was initiated in 2016. The goal of the project is to better characterize changes in the optical properties of polymers found in multi-layered spacecraft insulation (MLI) induced by electron bombardment. Previous analysis shows that chemical bonds break and potentially reform when exposed to high energy electrons like those seen in orbit. These chemical changes have been shown to alter a material's optical reflectance, among other material properties. This paper presents the initial experimental results of MLI materials exposed to various fluences of high energy electrons, designed to simulate a portion of the geosynchronous Earth orbit (GEO) space environment. It is shown that the spectral reflectance of some of the tested materials changes as a function of electron dose. These results provide an experimental benchmark for analysis of aging effects on satellite systems which can be used to improve remote sensing and space situational awareness. They also provide preliminary analysis on those materials that are most likely to comprise the high area-to-mass ratio (HAMR) population of space debris in the geosynchronous orbit environment. Finally, the results presented in this paper serve as a proof of concept for simulated environmental aging of spacecraft polymers that should lead to more experiments using a larger subset of spacecraft materials
Degradation of mangrove tissues by arboreal termites (\u3cem\u3eNasutitermes acajutlae\u3c/em\u3e) and their role in the mangrove C cycle (Puerto Rico): Chemical characterization and organic matter provenance using bulk δ\u3csup\u3e13\u3c/sup\u3eC, C/N, alkaline CuO oxidation‐GC/MS, and solid‐state \u3csup\u3e13\u3c/sup\u3eC NMR
Arboreal termites are wood decaying organisms that play an important role in the first stages of C cycling in mangrove systems. The chemical composition of Rhizophora mangle, Avicennia germinans, and Laguncularia racemosa leaf, stem, and pneumatophore tissues as well as associated sediments was compared to that of nests of the termite Nasutitermes acajutlae. Nests gave δ13C values of −26.1 to −27.2‰ (±0.1) and C/N of 43.3 (±2.0) to 98.6 (±16.2) which were similar to all stem and pneumatophores but distinct from mangrove leaves or sediments. Organic matter processed by termites yielded lignin phenol concentrations (Λ, lambda) that were 2–4 times higher than stem or pneumatophores and 10–20 times higher than that of leaves or sediments, suggesting that the nests were more resistant to biodegradation than the mangrove vegetation source. 13C NMR revealed that polysaccharide content of mangrove tissues (50–69% C) was higher than that of the nests (46–51% C). Conversely, lignin accounted for 16.2–19.6% C of nest material, a threefold increase relative to living mangrove tissues; a similar increase in aromatic methoxyl content was also observed in the nests. Lipids (aliphatic and paraffinic moieties) were also important but rather variable chemical components of all three mangrove species, representing between 13.5 and 28.3% of the C content. Termite nests contained 3.14 Mg C ha−1 which represents approximately 2% of above ground C storage in mangroves, a value that is likely to increase upon burial due to their refractory chemical composition
Recommended from our members
Estimating global mean sea-level rise and its uncertainties by 2100 and 2300 from an expert survey
Sea-level rise projections and knowledge of their uncertainties are vital to make informed mitigation and adaptation decisions. To elicit projections from members of the scientific community regarding future global mean sea-level (GMSL) rise, we repeated a survey originally conducted five years ago. Under Representative Concentration Pathway (RCP) 2.6, 106 experts projected a likely (central 66% probability) GMSL rise of 0.30–0.65 m by 2100, and 0.54–2.15 m by 2300, relative to 1986–2005. Under RCP 8.5, the same experts projected a likely GMSL rise of 0.63–1.32 m by 2100, and 1.67–5.61 m by 2300. Expert projections for 2100 are similar to those from the original survey, although the projection for 2300 has extended tails and is higher than the original survey. Experts give a likelihood of 42% (original survey) and 45% (current survey) that under the high-emissions scenario GMSL rise will exceed the upper bound (0.98 m) of the likely range estimated by the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, which is considered to have an exceedance likelihood of 17%. Responses to open-ended questions suggest that the increases in upper-end estimates and uncertainties arose from recent influential studies about the impact of marine ice cliff instability on the meltwater contribution to GMSL rise from the Antarctic Ice Sheet. © 2020, The Author(s)
- …