1,264 research outputs found

    Surface anisotropy in nanomagnets: transverse or N\'eel ?

    Full text link
    Through the hysteresis loop and magnetization spatial distribution we study and compare two models for surface anisotropy in nanomagnets: a model with transverse anisotropy axes and N\'eel's model. While surface anisotropy in the transverse model induces several jumps in the hysteresis loop because of the cluster-wise switching of spins, in the N\'eel model the jumps correspond to successive {\it coherent partial rotations} of the whole bunch of spins. These calculations together with experimental results suggest that N\'eel's model for surface anisotropy is more appropriate.Comment: 12 pages, 6 eps figure

    Effect of exchange interaction on superparamagnetic relaxation

    Full text link
    We use Langer's approach to calculate the reaction rate of a system of two (classical) spins interacting via the exchange coupling JJ in a magnetic field HH, with uniaxial anisotropy of constant KK. We find a particular value of the exchange coupling, that is jJ/K=jc1h2j\equiv J/K = j_c\equiv 1-h^2, where hH/2Kh\equiv H/2K, which separates two regimes corresponding to a two-stage and one-stage switching. For jjcj\gg j_c the N\'eel-Brown result for the one-spin problem is recovered.Comment: 7 pages, 2 eps figures, fig.1 of better quality can be provided upon reques

    Magnetization of nanomagnet assemblies: Effects of anisotropy and dipolar interactions

    Full text link
    We investigate the effect of anisotropy and weak dipolar interactions on the magnetization of an assembly of nanoparticles with distributed magnetic moments, i.e., assembly of magnetic nanoparticles in the one-spin approximation, with textured or random anisotropy. The magnetization of a free particle is obtained either by a numerical calculation of the partition function or analytically in the low and high field regimes, using perturbation theory and the steepest-descent approximation, respectively. The magnetization of an interacting assembly is computed analytically in the range of low and high field, and numerically using the Monte Carlo technique. Approximate analytical expressions for the assembly magnetization are provided which take account of the dipolar interactions, temperature, magnetic field, and anisotropy. The effect of anisotropy and dipolar interactions are discussed and the deviations from the Langevin law they entail are investigated, and illustrated for realistic assemblies with the lognormal moment distribution.Comment: 21 pages, 5 eps figure

    Composition dependent magnetic properties of iron oxide - polyaniline nanoclusters

    Get PDF
    Gamma - Iron Oxide prepared by sol -gel process was used to produce nanocomposites with polyaniline of varying aniline concentrations. TEM shows the presence of chain like structure for lower polyaniline concentration. The room temperature hysteresis curves show finite coercivity of 160 Oe for all the composites while the saturation magnetization was found to decrease with increasing polymer content. ZFC - FC magnetisation measurements indicate high blocking temperatures. It is believed that this indicates a strongly interacting system, which is also shown by our TEM results. Monte Carlo simulations performed on a random anisotropy model with dipolar and exchange inteactions match well with experimental results.Comment: 9 (nine) pages, 6 figures (jpeg and eps

    Phase transition in nanomagnetite

    Get PDF
    Recently, the application of nanosized magnetite particles became an area of growing interest for their potential practical applications. Nanosized magnetite samples of 36 and 9 nm sizes were synthesized. Special care was taken on the right stoichiometry of the magnetite particles. Mössbauer spectroscopy measurements were made in 4.2–300 K temperature range. The temperature dependence of the intensities of the spectral components indicated size dependent transition taking place in a broad temperature range. For nanosized samples, the hyperfine interaction values and their relative intensities changed above the Verwey transition temperature value of bulk megnetite. The continuous transition indicated the formation of dendritelike granular assemblies formed during the preparation of the samples

    Role of dipolar interactions in a system of Ni nanoparticles studied by magnetic susceptibility measurements

    Get PDF
    The role of dipolar interactions among Ni nanoparticles (NP) embedded in an amorphous SiO2/C matrix with different concentrations has been studied performing ac magnetic susceptibility Chi_ac measurements. For very diluted samples, with Ni concentrations < 4 wt % Ni or very weak dipolar interactions, the data are well described by the Neel-Arrhenius law. Increasing Ni concentration to values up to 12.8 wt % Ni results in changes in the Neel-Arrhenius behavior, the dipolar interactions become important, and need to be considered to describe the magnetic response of the NPs system. We have found no evidence of a spin-glasslike behavior in our Ni NP systems even when dipolar interactions are clearly present.Comment: 7 pages, 5 figures, 3 table

    Magnetic properties of polypyrrole - coated iron oxide nanoparticles

    Full text link
    Iron oxide nanoparticles were prepared by sol -gel process. Insitu polymerization of pyrrole monomer in the presence of oxygen in iron oxide ethanol suspension resulted in a iron oxide - polypyrrole nanocomposite. The structure and magnetic properties were investigated for varying pyrrole concentrations. The presence of the gamma - iron oxide phase and polypyrrole were confirmed by XRD and FTIR respectively. Agglomeration was found to be comparatively much reduced for the coated samples, as shown by TEM. AC susceptibility measurements confirmed the superparamagnetic behaviour. Numerical simulations performed for an interacting model system are performed to estimate the anisotropy and compare favourably with experimental results.Comment: 11 pages,8 figure

    Large magnetic anisotropy in Ferrihydrite nanoparticles synthesized from reverse micelles

    Full text link
    Six-line ferrihydrite(FH) nanoparticles have been synthesized in the core of reverse micelles, used as nanoreactors to obtain average particle sizes \approx 2 to 4 nm. The blocking temperatures TBmT_B^m extracted from magnetization data increased from 10\approx 10 to 20 K for increasing particle size. Low-temperature \MOS measurements allowed to observe the onset of differentiated contributions from particle core and surface as the particle size increases. The magnetic properties measured in the liquid state of the original emulsion showed that the \FH phase is not present in the liquid precursor, but precipitates in the micelle cores after the free water is freeze-dried. Systematic susceptibility \chi_{ac}(\emph{f},T) measurements showed the dependence of the effective magnetic anisotropy energies EaE_{a} with particle volume, and yielded an effective anisotropy value of Keff=312±10K_{eff} = 312\pm10 kJ/m3^3.Comment: 8 pages, 10 figures. Nanotechnology, v17 (Nov. 2006) In pres

    Magnetic relaxation in finite two-dimensional nanoparticle ensembles

    Full text link
    We study the slow phase of thermally activated magnetic relaxation in finite two-dimensional ensembles of dipolar interacting ferromagnetic nanoparticles whose easy axes of magnetization are perpendicular to the distribution plane. We develop a method to numerically simulate the magnetic relaxation for the case that the smallest heights of the potential barriers between the equilibrium directions of the nanoparticle magnetic moments are much larger than the thermal energy. Within this framework, we analyze in detail the role that the correlations of the nanoparticle magnetic moments and the finite size of the nanoparticle ensemble play in magnetic relaxation.Comment: 21 pages, 4 figure
    corecore