We study the slow phase of thermally activated magnetic relaxation in finite
two-dimensional ensembles of dipolar interacting ferromagnetic nanoparticles
whose easy axes of magnetization are perpendicular to the distribution plane.
We develop a method to numerically simulate the magnetic relaxation for the
case that the smallest heights of the potential barriers between the
equilibrium directions of the nanoparticle magnetic moments are much larger
than the thermal energy. Within this framework, we analyze in detail the role
that the correlations of the nanoparticle magnetic moments and the finite size
of the nanoparticle ensemble play in magnetic relaxation.Comment: 21 pages, 4 figure