515 research outputs found

    Refining the associations of the Fermi Large Area Telescope Source Catalogs

    Get PDF
    The Fermi-Large Area Telescope (LAT) First Source Catalog (1FGL) was released in February 2010 and the Fermi-LAT 2-Year Source Catalog (2FGL) appeared in April 2012, based on data from 24 months of operation. Since their releases, many follow up observations of unidentified gamma-ray sources (UGSs) were performed and new procedures to associate gamma-ray sources with potential counterparts at other wavelengths were developed. Here we review and characterize all the associations as published in the 1FGL and 2FGL catalog on the basis of multifrequency archival observations. In particular we located 177 spectra for the low-energy counterparts that were not listed in the previous Fermi catalogs, and in addition we present new spectroscopic observations of 8 gamma-ray blazar candidates. Based on our investigations, we introduce a new counterpart category of "candidate associations" and propose a refined classification for the candidate low-energy counterparts of the Fermi sources. We compare the 1FGL-assigned counterparts with those listed in the 2FGL to determine which unassociated sources became associated in later releases of the Fermi catalogs. We also search for potential counterparts to all the remaining unassociated Fermi sources. Finally, we prepare a refined and merged list of all the associations of the 1FGL plus 2FGL catalogs that includes 2219 unique Fermi objects. This is the most comprehensive and systematic study of all the associations collected for the gamma-ray sources available to date. We conclude that 80% of the Fermi sources have at least one known plausible gamma-ray emitter within their positional uncertainty regions.Comment: 26 pages, 24 figures, 7 tables, ApJS accepted for publication (pre-proof version uploaded

    High-Latitude Molecular Clouds as gamma-ray Sources for GLAST

    Full text link
    For about two decades, a population of relative small and nearby molecular clouds has been known to exist at high Galactic latitudes. Lying more than 10∘^\circ from the Galactic plane, these clouds have typical distances of ∌\sim150 pc, angular sizes of ∌1∘\sim1^\circ, and masses of order tens of solar masses. These objects are passive sources of high-energy Îł\gamma-rays through cosmic ray-gas interactions. Using a new wide-angle CO survey of the northern sky, we show that typical high-latitude clouds are not bright enough in Îł\gamma-rays to have been detected by EGRET, but that of order 100 of them will be detectable by the Large Area Telescope (LAT) on GLAST. Thus, we predict a new steady population of Îł\gamma-ray sources at high Galactic latitudes, perhaps the most numerous after active galactic nuclei.Comment: Accepted for publication in the Astrophysical Journal Letter

    EGRET Observations of the Diffuse Gamma-Ray Emission in Orion: Analysis Through Cycle 6

    Get PDF
    We present a study of the high-energy diffuse emission observed toward Orion by the Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Gamma-Ray Observatory. The total exposure by EGRET in this region has increased by more than a factor of two since a previous study. A simple model for the diffuse emission adequately fits the data; no significant point sources are detected in the region studied (l=195∘l = 195^\circ to 220∘220^\circ and b=−25∘to−10∘b = -25^\circ to -10^\circ) in either the composite dataset or in two separate groups of EGRET viewing periods considered. The gamma-ray emissivity in Orion is found to be (1.65±0.11)×10−26ssr−1(1.65 \pm 0.11) \times 10^{-26} {s sr}^{-1} for E > 100 MeV, and the differential emissivity is well-described as a combination of contributions from cosmic-ray electrons and protons with approximately the local density. The molecular mass calibrating ratio is N(H2)/WCO=(1.35±0.15)×1020cm−2(Kkm/s)−1N(H_2)/W_{CO} = (1.35 \pm 0.15) \times 10^{20} cm^{-2} (K km/s)^{-1}.Comment: 16 pages, including 5 figures. 3 Tables as three separate files. Latex document, needs AASTEX style files. Accepted for publication in Ap

    Diffuse Gamma Rays: Galactic and Extragalactic Diffuse Emission

    Full text link
    "Diffuse" gamma rays consist of several components: truly diffuse emission from the interstellar medium, the extragalactic background, whose origin is not firmly established yet, and the contribution from unresolved and faint Galactic point sources. One approach to unravel these components is to study the diffuse emission from the interstellar medium, which traces the interactions of high energy particles with interstellar gas and radiation fields. Because of its origin such emission is potentially able to reveal much about the sources and propagation of cosmic rays. The extragalactic background, if reliably determined, can be used in cosmological and blazar studies. Studying the derived "average" spectrum of faint Galactic sources may be able to give a clue to the nature of the emitting objects.Comment: 32 pages, 28 figures, kapproc.cls. Chapter to the book "Cosmic Gamma-Ray Sources," to be published by Kluwer ASSL Series, Edited by K. S. Cheng and G. E. Romero. More details can be found at http://www.gamma.mpe-garching.mpg.de/~aws/aws.htm

    Physicochemical and Antibacterial Properties of Composite Films Based on Bacterial Cellulose and Chitosan for Wound Dressing Materials

    Get PDF
    New bacterial cellulose/chitosan (BC/Ch) nanocomposite films were obtained using a simple procedure by immersing BC synthesized by Komagataeibacter xylinus in 1% acetic acid solutions of Ch with the degree of deacetylation 75‒85% of medium molecular weight. The BC and BC/Ch composites chemical composition was examined by FTIR, the mechanical properties by a tensile tester, surface morphology by scanning electron microscopy, and antibacterial activity against S. aureus, E. coli and P. aeruginosa by diffusion and joint incubation methods. The FTIR spectra indicated the intermolecular interaction between BC and Ch. Due to addition of 0.6% (w/v) Ch, the films of BC/Ch become more homogeneous with a significantly denser fibril structure, smaller pore diameter and higher surface area in comparison to those of pure BC films. Micro- (15‒35 nm) and macrofibrils (50‒150 nm) in both BC and BC/Ch films are joined in ribbon-like fibers, providing a high degree of mechanical strength (Young’s modulus: 33‒36 MPa, tensile strength and elongation et break: 17, 22 MPa). The obtained hybrid material is transparent, flexible and displays good water absorption capacity and water vapor permeability. The films have reasonable thermal stability to be in contact with body or during steam sterilization, since maximum degradation temperature (Td) of both biocomposites is around 400‒600 °C. The disc diffusion method confirmed that the BC/Ch films have predominantly non-diffusible antibacterial properties. Antibacterial assessment by the joint incubation method proved that addition of Ch to BC films resulted in significant growth inhibition against target bacteria. The BC/Ch biocomposites’ notable properties make them suitable for wound healing applications

    Fermi LAT Observation of Diffuse Gamma-Rays Produced Through Interactions between Local Interstellar Matter and High Energy Cosmic Rays

    Full text link
    Observations by the Large Area Telescope (LAT) on the \textit{Fermi} mission of diffuse Îł\gamma-rays in a mid-latitude region in the third quadrant (Galactic longitude ll from 200\arcdeg to 260\arcdeg and latitude ∣b∣| b | from 22\arcdeg to 60\arcdeg) are reported. The region contains no known large molecular cloud and most of the atomic hydrogen is within 1 kpc of the solar system. The contributions of Îł\gamma-ray point sources and inverse Compton scattering are estimated and subtracted. The residual Îł\gamma-ray intensity exhibits a linear correlation with the atomic gas column density in energy from 100 MeV to 10 GeV. The measured integrated Îł\gamma-ray emissivity is (1.63 \pm 0.05) \times 10^{-26} {\rm photons s^{-1} sr^{-1} H\mathchar`-atom^{-1}} and (0.66 \pm 0.02) \times 10^{-26} {\rm photons s^{-1} sr^{-1} H\mathchar`-atom^{-1}} above 100 MeV and above 300 MeV, respectively, with additional systematic error of ∌10\sim 10%. The differential emissivity in 100 MeV--10 GeV agrees with calculations based on cosmic ray spectra consistent with those directly measured, at the 10% level. The results obtained indicate that cosmic ray nuclei spectra within 1 kpc from the solar system in regions studied are close to the local interstellar spectra inferred from direct measurements at the Earth within ∌10\sim 10%.Comment: accepted for publication in the Astrophysical Journal. Revised according to the author proof.(correction of typos and minor revisions
    • 

    corecore