3,303 research outputs found

    Programming in Restrictive Housing: Considerations for Improving Outcome Evaluations

    Get PDF
    A number of studies have identified “what works” in regard to the successful implementation of correctional programming over the past several decades. Few studies, however, have examined the complexities associated with programming in restrictive housing. Using data from a Midwestern department of corrections, we examined whether the provision of programming in restrictive housing achieved desired outcomes (e.g., reductions in inmate misconduct). The findings revealed the amount of time served in restrictive housing and confinement in different types of restrictive housing may influence estimations of a treatment effect. As a growing number of states seek to reform the use of restrictive housing, the proper implementation of cognitive-behavioral programming may increase institutional security and safety

    Cool Jupiters greatly outnumber their toasty siblings : Occurrence rates from the Anglo-Australian Planet Search

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©2019 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Our understanding of planetary systems different to our own has grown dramatically in the past 30 yr. However, our efforts to ascertain the degree to which the Solar system is abnormal or unique have been hindered by the observational biases inherent to the methods that have yielded the greatest exoplanet hauls. On the basis of such surveys, one might consider our planetary system highly unusual - but the reality is that we are only now beginning to uncover the true picture. In this work, we use the full 18-yr archive of data from the Anglo-Australian Planet Search to examine the abundance of 'cool Jupiters' - analogues to the Solar system's giant planets, Jupiter and Saturn. We find that such planets are intrinsically far more common through the cosmos than their siblings, the hot Jupiters.We find that the occurrence rate of such 'cool Jupiters' is 6.73 +2.09 -1.13 per cent, almost an order of magnitude higher than the occurrence of hot Jupiters (at 0.84 +0.70 -0.20 per cent). We also find that the occurrence rate of giant planets is essentially constant beyond orbital distances of ~1 au. Our results reinforce the importance of legacy radial velocity surveys for the understanding of the Solar system's place in the cosmos.Peer reviewe

    The Transformation Project: 2014 Annual Report

    Get PDF
    For years debate has rumbled in this country over prison overcrowding. More recently, there has been an additional spotlight on issues that are exacerbated when prisons are over capacity, such as prison rape and the use of restrictive housing (housing inmates in isolated conditions). In the case of prison rape, federal standards have been placed on institutions through the passage of the Prison Rape Elimination Act (PREA). General consensus among corrections professionals is that a lack of internal action diminished their voice during the creation of the PREA standards. There is consequently a large motivation for correctional institutions to work to address concerns regarding restrictive housing. Groups like Amnesty International, the American Civil Liberties Union and the Association of State Correctional Administrators have all been contributing to this effort by each creating their own guidelines for using restrictive housing. 2014 was a great opportunity for us to reflect on how Transformation Project (TP) will benefit institutions as they look to revise how they house inmates that are a threat to themselves or others. Not only does TP provide programming for restrictive housing, where there has historically been a dearth of programming, it works to increase the amount and quality of interaction between staff and participants, as well as provide a measure for assessing progress in restrictive housing. All of these efforts are included in the recommendations across invested organizations, adding additional value to TP curriculum. In addition to strengthening TP in restrictive housing, this year we began exploring ways the program can be modified for use in a women’s facility. While there is much work to be done in this area, we are excited to bring adaptions to the curriculum that will specifically address the needs of justice involved women. We look forward to continuing the development process with our partners at the Nebraska Correctional Center for Women in York, Nebraska, as this group has been instrumental to providing essential expertise and feedback. As debates around corrections issues roll on, in the coming months we look forward to solidifying TP’s role in the rehabilitation of inmates throughout the course of their incarceration

    Diverse policy implications for future ozone and surface UV in a changing climate

    Get PDF
    Due to the success of the Montreal Protocol in limiting emissions of ozone-depleting substances, concentrations of atmospheric carbon dioxide, nitrous oxide, and methane will control the evolution of total column and stratospheric ozone by the latter half of the 21st century. As the world proceeds down the path of reducing climate forcing set forth by the 2015 Conference of the Parties to the United Nations Framework Convention on Climate Change (COP 21), a broad range of ozone changes are possible depending on future policies enacted. While decreases in tropical stratospheric ozone will likely persist regardless of the future emissions scenario, extratropical ozone could either remain weakly depleted or even increase well above historical levels, with diverse implication for ultraviolet (UV) radiation. The ozone layer's dependence on future emissions of these gases creates a complex policy decision space for protecting humans and ecosystems, which includes unexpected options such as accepting nitrous oxide emissions in order to maintain historical column ozone and surface UV levels

    Evidence for Supernova-Synthesised Dust from the Rising Afterglow of GRB 071025 at z~5

    Get PDF
    We present observations and analysis of the broadband afterglow of Swift GRB 071025. Using optical and infrared (RIYJHK) photometry, we derive a photometric redshift of 4.4 < z < 5.2; at this redshift our simultaneous multicolour observations begin at ~30 s after the GRB trigger in the host frame and during the initial rising phase of the afterglow. We associate the light curve peak at 580 s in the observer frame with the formation of the forward shock, giving an estimate of the initial Lorentz factor Gamma_0 ~ 200. The red spectral energy distribution (even in regions not affected by the Lyman-alpha break) provides secure evidence of a large dust column. However, the inferred extinction curve shows a prominent flat component between 2000-3000 Angstroms in the rest-frame, inconsistent with any locally observed template but well-fit by models of dust formed by supernovae. Time-dependent fits to the extinction profile reveal no evidence of dust destruction and limit the decrease in the extinction column to Delta A_3000 < 0.54 mag after t = 50 s in the rest frame. Our observations provide evidence of a transition in dust properties at z~5, in agreement with studies of high-z quasars, and suggest that SN-formed dust continues to dominate the opacity of typical galaxies at this redshift.Comment: Resubmitted to MNRAS following referee report. Contains additional figure and some extra analysis/discussio

    A comprehensive estimate for loss of atmospheric carbon tetrachloride (CCl4) to the ocean

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Atmospheric Chemistry and Physics 16 (2016): 10899-10910, doi:10.5194/acp-16-10899-2016.Extensive undersaturations of carbon tetrachloride (CCl4) in Pacific, Atlantic, and Southern Ocean surface waters indicate that atmospheric CCl4 is consumed in large amounts by the ocean. Observations made on 16 research cruises between 1987 and 2010, ranging in latitude from 60° N to 77° S, show that negative saturations extend over most of the surface ocean. Corrected for physical effects associated with radiative heat flux, mixing, and air injection, these anomalies were commonly on the order of −5 to −10 %, with no clear relationship to temperature, productivity, or other gross surface water characteristics other than being more negative in association with upwelling. The atmospheric flux required to sustain these undersaturations is 12.4 (9.4–15.4) Gg yr−1, a loss rate implying a partial atmospheric lifetime with respect to the oceanic loss of 183 (147–241) yr and that â€‰âˆŒâ€‰â€Ż18 (14–22)  % of atmospheric CCl4 is lost to the ocean. Although CCl4 hydrolyzes in seawater, published hydrolysis rates for this gas are too slow to support such large undersaturations, given our current understanding of air–sea gas exchange rates. The even larger undersaturations in intermediate depth waters associated with reduced oxygen levels, observed in this study and by other investigators, strongly suggest that CCl4 is ubiquitously consumed at mid-depth, presumably by microbiota. Although this subsurface sink creates a gradient that drives a downward flux of CCl4, the gradient alone is not sufficient to explain the observed surface undersaturations. Since known chemical losses are likewise insufficient to sustain the observed undersaturations, this suggests a possible biological sink for CCl4 in surface or near-surface waters of the ocean. The total atmospheric lifetime for CCl4, based on these results and the most recent studies of soil uptake and loss in the stratosphere is now 32 (26–43) yr.This research could not have been done without the support of our various institutions and the programs through which they support science, including funds at various times from NASA’s Upper Atmosphere Research Program, the US Department of Energy, NOAA’s Climate Program Office, the Atmospheric and Geosciences sections of the National Science Foundation, and the National Research Council of the US National Academies of Science

    A comprehensive estimate for loss of atmospheric carbon tetrachloride (CCl4) to the ocean

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Atmospheric Chemistry and Physics 16 (2016): 10899-10910, doi:10.5194/acp-16-10899-2016.Extensive undersaturations of carbon tetrachloride (CCl4) in Pacific, Atlantic, and Southern Ocean surface waters indicate that atmospheric CCl4 is consumed in large amounts by the ocean. Observations made on 16 research cruises between 1987 and 2010, ranging in latitude from 60° N to 77° S, show that negative saturations extend over most of the surface ocean. Corrected for physical effects associated with radiative heat flux, mixing, and air injection, these anomalies were commonly on the order of −5 to −10 %, with no clear relationship to temperature, productivity, or other gross surface water characteristics other than being more negative in association with upwelling. The atmospheric flux required to sustain these undersaturations is 12.4 (9.4–15.4) Gg yr−1, a loss rate implying a partial atmospheric lifetime with respect to the oceanic loss of 183 (147–241) yr and that â€‰âˆŒâ€‰â€Ż18 (14–22)  % of atmospheric CCl4 is lost to the ocean. Although CCl4 hydrolyzes in seawater, published hydrolysis rates for this gas are too slow to support such large undersaturations, given our current understanding of air–sea gas exchange rates. The even larger undersaturations in intermediate depth waters associated with reduced oxygen levels, observed in this study and by other investigators, strongly suggest that CCl4 is ubiquitously consumed at mid-depth, presumably by microbiota. Although this subsurface sink creates a gradient that drives a downward flux of CCl4, the gradient alone is not sufficient to explain the observed surface undersaturations. Since known chemical losses are likewise insufficient to sustain the observed undersaturations, this suggests a possible biological sink for CCl4 in surface or near-surface waters of the ocean. The total atmospheric lifetime for CCl4, based on these results and the most recent studies of soil uptake and loss in the stratosphere is now 32 (26–43) yr.This research could not have been done without the support of our various institutions and the programs through which they support science, including funds at various times from NASA’s Upper Atmosphere Research Program, the US Department of Energy, NOAA’s Climate Program Office, the Atmospheric and Geosciences sections of the National Science Foundation, and the National Research Council of the US National Academies of Science
    • 

    corecore